{"title":"Rainbow Hamilton cycles in random geometric graphs","authors":"Alan Frieze, Xavier Pérez-Giménez","doi":"10.1002/rsa.21201","DOIUrl":null,"url":null,"abstract":"Let <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0001\" display=\"inline\" location=\"graphic/rsa21201-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<mi>…</mi>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>n</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {X}_1,{X}_2,\\dots, {X}_n $$</annotation>\n</semantics></math> be chosen independently and uniformly at random from the unit <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0002\" display=\"inline\" location=\"graphic/rsa21201-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>d</mi>\n</mrow>\n$$ d $$</annotation>\n</semantics></math>-dimensional cube <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0003\" display=\"inline\" location=\"graphic/rsa21201-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mo stretchy=\"false\">[</mo>\n<mn>0</mn>\n<mo>,</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">]</mo>\n</mrow>\n<mrow>\n<mi>d</mi>\n</mrow>\n</msup>\n</mrow>\n$$ {\\left[0,1\\right]}^d $$</annotation>\n</semantics></math>. Let <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0004\" display=\"inline\" location=\"graphic/rsa21201-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>r</mi>\n</mrow>\n$$ r $$</annotation>\n</semantics></math> be given and let <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0005\" display=\"inline\" location=\"graphic/rsa21201-math-0005.png\" overflow=\"scroll\">\n<mrow>\n<mi>𝒳</mi>\n<mo>=</mo>\n<mfenced close=\"}\" open=\"{\" separators=\"\">\n<mrow>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<mi>…</mi>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>n</mi>\n</mrow>\n</msub>\n</mrow>\n</mfenced>\n</mrow></math>. The random geometric graph <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0006\" display=\"inline\" location=\"graphic/rsa21201-math-0006.png\" overflow=\"scroll\">\n<mrow>\n<mi>G</mi>\n<mo>=</mo>\n<msub>\n<mrow>\n<mi>G</mi>\n</mrow>\n<mrow>\n<mi>𝒳</mi>\n<mo>,</mo>\n<mi>r</mi>\n</mrow>\n</msub>\n</mrow></math> has vertex set <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0007\" display=\"inline\" location=\"graphic/rsa21201-math-0007.png\" overflow=\"scroll\">\n<mrow>\n<mi>𝒳</mi>\n</mrow></math> and an edge <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0008\" display=\"inline\" location=\"graphic/rsa21201-math-0008.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>j</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {X}_i{X}_j $$</annotation>\n</semantics></math> whenever <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0009\" display=\"inline\" location=\"graphic/rsa21201-math-0009.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo>‖</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n<mo form=\"prefix\">−</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>j</mi>\n</mrow>\n</msub>\n<mo>‖</mo>\n<mo>≤</mo>\n<mi>r</mi>\n</mrow>\n$$ \\left\\Vert {X}_i-{X}_j\\right\\Vert \\le r $$</annotation>\n</semantics></math>. We show that if each edge of <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0010\" display=\"inline\" location=\"graphic/rsa21201-math-0010.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> is colored independently from one of <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0011\" display=\"inline\" location=\"graphic/rsa21201-math-0011.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n<mo>+</mo>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ n+o(n) $$</annotation>\n</semantics></math> colors and <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0012\" display=\"inline\" location=\"graphic/rsa21201-math-0012.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>r</mi>\n</mrow>\n$$ r $$</annotation>\n</semantics></math> has the smallest value such that <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0013\" display=\"inline\" location=\"graphic/rsa21201-math-0013.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> has minimum degree at least two, then <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0014\" display=\"inline\" location=\"graphic/rsa21201-math-0014.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> contains a rainbow Hamilton cycle asymptotically almost surely.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"61 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let be chosen independently and uniformly at random from the unit -dimensional cube . Let be given and let . The random geometric graph has vertex set and an edge whenever . We show that if each edge of is colored independently from one of colors and has the smallest value such that has minimum degree at least two, then contains a rainbow Hamilton cycle asymptotically almost surely.