Rainbow Hamilton cycles in random geometric graphs

Alan Frieze, Xavier Pérez-Giménez
{"title":"Rainbow Hamilton cycles in random geometric graphs","authors":"Alan Frieze, Xavier Pérez-Giménez","doi":"10.1002/rsa.21201","DOIUrl":null,"url":null,"abstract":"Let <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0001\" display=\"inline\" location=\"graphic/rsa21201-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<mi>…</mi>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>n</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {X}_1,{X}_2,\\dots, {X}_n $$</annotation>\n</semantics></math> be chosen independently and uniformly at random from the unit <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0002\" display=\"inline\" location=\"graphic/rsa21201-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>d</mi>\n</mrow>\n$$ d $$</annotation>\n</semantics></math>-dimensional cube <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0003\" display=\"inline\" location=\"graphic/rsa21201-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mo stretchy=\"false\">[</mo>\n<mn>0</mn>\n<mo>,</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">]</mo>\n</mrow>\n<mrow>\n<mi>d</mi>\n</mrow>\n</msup>\n</mrow>\n$$ {\\left[0,1\\right]}^d $$</annotation>\n</semantics></math>. Let <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0004\" display=\"inline\" location=\"graphic/rsa21201-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>r</mi>\n</mrow>\n$$ r $$</annotation>\n</semantics></math> be given and let <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0005\" display=\"inline\" location=\"graphic/rsa21201-math-0005.png\" overflow=\"scroll\">\n<mrow>\n<mi>𝒳</mi>\n<mo>=</mo>\n<mfenced close=\"}\" open=\"{\" separators=\"\">\n<mrow>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<mi>…</mi>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>n</mi>\n</mrow>\n</msub>\n</mrow>\n</mfenced>\n</mrow></math>. The random geometric graph <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0006\" display=\"inline\" location=\"graphic/rsa21201-math-0006.png\" overflow=\"scroll\">\n<mrow>\n<mi>G</mi>\n<mo>=</mo>\n<msub>\n<mrow>\n<mi>G</mi>\n</mrow>\n<mrow>\n<mi>𝒳</mi>\n<mo>,</mo>\n<mi>r</mi>\n</mrow>\n</msub>\n</mrow></math> has vertex set <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0007\" display=\"inline\" location=\"graphic/rsa21201-math-0007.png\" overflow=\"scroll\">\n<mrow>\n<mi>𝒳</mi>\n</mrow></math> and an edge <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0008\" display=\"inline\" location=\"graphic/rsa21201-math-0008.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>j</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {X}_i{X}_j $$</annotation>\n</semantics></math> whenever <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0009\" display=\"inline\" location=\"graphic/rsa21201-math-0009.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo>‖</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n<mo form=\"prefix\">−</mo>\n<msub>\n<mrow>\n<mi>X</mi>\n</mrow>\n<mrow>\n<mi>j</mi>\n</mrow>\n</msub>\n<mo>‖</mo>\n<mo>≤</mo>\n<mi>r</mi>\n</mrow>\n$$ \\left\\Vert {X}_i-{X}_j\\right\\Vert \\le r $$</annotation>\n</semantics></math>. We show that if each edge of <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0010\" display=\"inline\" location=\"graphic/rsa21201-math-0010.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> is colored independently from one of <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0011\" display=\"inline\" location=\"graphic/rsa21201-math-0011.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n<mo>+</mo>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ n+o(n) $$</annotation>\n</semantics></math> colors and <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0012\" display=\"inline\" location=\"graphic/rsa21201-math-0012.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>r</mi>\n</mrow>\n$$ r $$</annotation>\n</semantics></math> has the smallest value such that <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0013\" display=\"inline\" location=\"graphic/rsa21201-math-0013.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> has minimum degree at least two, then <math altimg=\"urn:x-wiley:rsa:media:rsa21201:rsa21201-math-0014\" display=\"inline\" location=\"graphic/rsa21201-math-0014.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> contains a rainbow Hamilton cycle asymptotically almost surely.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"61 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let X 1 , X 2 , , X n $$ {X}_1,{X}_2,\dots, {X}_n $$ be chosen independently and uniformly at random from the unit d $$ d $$ -dimensional cube [ 0 , 1 ] d $$ {\left[0,1\right]}^d $$ . Let r $$ r $$ be given and let 𝒳 = X 1 , X 2 , , X n . The random geometric graph G = G 𝒳 , r has vertex set 𝒳 and an edge X i X j $$ {X}_i{X}_j $$ whenever X i X j r $$ \left\Vert {X}_i-{X}_j\right\Vert \le r $$ . We show that if each edge of G $$ G $$ is colored independently from one of n + o ( n ) $$ n+o(n) $$ colors and r $$ r $$ has the smallest value such that G $$ G $$ has minimum degree at least two, then G $$ G $$ contains a rainbow Hamilton cycle asymptotically almost surely.
彩虹汉密尔顿循环随机几何图形
设X1 X2…Xn$$ {X}_1,{X}_2,\dots, {X}_n $$ 从单位d中独立均匀随机选取$$ d $$-维立方体[0,1$$ {\left[0,1\right]}^d $$. 设r$$ r $$ 设,f =X1,X2,…,Xn。随机几何图G=G∈,r具有顶点集∈∈和一条边∈$$ {X}_i{X}_j $$ $$ \left\Vert {X}_i-{X}_j\right\Vert \le r $$. 如果G的每条边$$ G $$ 与n+o(n)中的一个无关$$ n+o(n) $$ 颜色和r$$ r $$ 的值最小,使得G$$ G $$ 最小度至少为2,那么G$$ G $$ 几乎肯定包含一个渐近的彩虹汉密尔顿环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信