Small cycle structure for words in conjugation invariant random permutations

Mohamed Slim Kammoun, Mylène Maïda
{"title":"Small cycle structure for words in conjugation invariant random permutations","authors":"Mohamed Slim Kammoun, Mylène Maïda","doi":"10.1002/rsa.21203","DOIUrl":null,"url":null,"abstract":"We study the cycle structure of words in several random permutations. We assume that the permutations are independent and that their distribution is conjugation invariant, with a good control on their short cycles. If, after successive cyclic simplifications, the word <math altimg=\"urn:x-wiley:rsa:media:rsa21203:rsa21203-math-0001\" display=\"inline\" location=\"graphic/rsa21203-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>w</mi>\n</mrow>\n$$ w $$</annotation>\n</semantics></math> still contains at least two different letters, then we get a universal limiting joint law for short cycles for the word in these permutations. These results can be seen as an extension of our previous work (Kammoun and Maïda. <i>Electron. Commun. Probab.</i> 2020;25:1-14.) from the product of permutations to any non-trivial word in the permutations and also as an extension of the results of Nica (<i>Random Struct. Algorithms</i>1994;5:703-730.) from uniform permutations to general conjugation invariant random permutations. In particular, we get optimal assumptions in the case of the commutator of two such random permutations.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"1 5-6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the cycle structure of words in several random permutations. We assume that the permutations are independent and that their distribution is conjugation invariant, with a good control on their short cycles. If, after successive cyclic simplifications, the word w $$ w $$ still contains at least two different letters, then we get a universal limiting joint law for short cycles for the word in these permutations. These results can be seen as an extension of our previous work (Kammoun and Maïda. Electron. Commun. Probab. 2020;25:1-14.) from the product of permutations to any non-trivial word in the permutations and also as an extension of the results of Nica (Random Struct. Algorithms1994;5:703-730.) from uniform permutations to general conjugation invariant random permutations. In particular, we get optimal assumptions in the case of the commutator of two such random permutations.
共轭不变随机排列中单词的小循环结构
我们研究了几种随机排列中单词的循环结构。我们假设这些置换是独立的,它们的分布是共轭不变的,它们的短周期得到了很好的控制。如果在连续循环化简之后,单词w $$ w $$仍然包含至少两个不同的字母,那么我们就得到了单词在这些排列中的短循环的通用极限联合律。这些结果可以看作是我们之前工作的延伸(Kammoun和Maïda)。电子。普通的。Probab. 2020;25:1-14.),从排列的乘积到排列中的任何非平凡单词,也作为Nica (Random Struct)结果的扩展。从一致排列到一般共轭不变随机排列。特别地,我们得到了两个这样的随机排列的对易子的最优假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信