Eager Equality for Rational Number Arithmetic

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jan A. Bergstra, John V. Tucker
{"title":"Eager Equality for Rational Number Arithmetic","authors":"Jan A. Bergstra, John V. Tucker","doi":"https://dl.acm.org/doi/10.1145/3580365","DOIUrl":null,"url":null,"abstract":"<p>Eager equality for algebraic expressions over partial algebras distinguishes or separates terms only if both have defined values and they are different. We consider arithmetical algebras with division as a partial operator, called meadows, and focus on algebras of rational numbers. To study eager equality, we use common meadows, which are totalisations of partial meadows by means of absorptive elements. An axiomatisation of common meadows is the basis of an axiomatisation of eager equality as a predicate on a common meadow. Applied to the rational numbers, we prove completeness and decidability of the equational theory of eager equality. To situate eager equality theoretically, we consider two other partial equalities of increasing strictness: Kleene equality, which is equivalent to the native equality of common meadows, and one we call cautious equality. Our methods of analysis for eager equality are quite general, and so we apply them to these two other partial equalities; and, in addition to common meadows, we use three other kinds of algebra designed to totalise division. In summary, we are able to compare 13 forms of equality for the partial meadow of rational numbers. We focus on the decidability of the equational theories of these equalities. We show that for the four total algebras, eager and cautious equality are decidable. We also show that for others the Diophantine Problem over the rationals is one-one computably reducible to their equational theories. The Diophantine Problem for rationals is a longstanding open problem. Thus, eager equality has substantially less complex semantics.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":"39 9","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3580365","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Eager equality for algebraic expressions over partial algebras distinguishes or separates terms only if both have defined values and they are different. We consider arithmetical algebras with division as a partial operator, called meadows, and focus on algebras of rational numbers. To study eager equality, we use common meadows, which are totalisations of partial meadows by means of absorptive elements. An axiomatisation of common meadows is the basis of an axiomatisation of eager equality as a predicate on a common meadow. Applied to the rational numbers, we prove completeness and decidability of the equational theory of eager equality. To situate eager equality theoretically, we consider two other partial equalities of increasing strictness: Kleene equality, which is equivalent to the native equality of common meadows, and one we call cautious equality. Our methods of analysis for eager equality are quite general, and so we apply them to these two other partial equalities; and, in addition to common meadows, we use three other kinds of algebra designed to totalise division. In summary, we are able to compare 13 forms of equality for the partial meadow of rational numbers. We focus on the decidability of the equational theories of these equalities. We show that for the four total algebras, eager and cautious equality are decidable. We also show that for others the Diophantine Problem over the rationals is one-one computably reducible to their equational theories. The Diophantine Problem for rationals is a longstanding open problem. Thus, eager equality has substantially less complex semantics.

有理数算术的渴望等式
部分代数上的代数表达式的渴望等式仅在两个项都有定义值且它们不同的情况下区分或分离项。我们考虑带有除法作为偏算子的算术代数,并把重点放在有理数代数上。为了研究渴望等式,我们使用了普通草甸,它是部分草甸通过吸收元素的总和。一个公理化的共同草地是一个公理化的基础渴望平等作为一个谓词在共同草地上。应用于有理数,证明了渴望等式等式理论的完备性和可判定性。为了从理论上定位渴望平等,我们考虑了另外两个严格程度越来越高的部分平等:Kleene平等,它相当于普通草地的原生平等,另一个我们称之为谨慎平等。我们对渴望等式的分析方法是相当一般的,所以我们把它们应用于这两个其他的部分等式;而且,除了普通的草皮,我们还使用了另外三种代数来计算除法的总和。综上所述,我们可以比较有理数部分草场的13种相等形式。我们着重讨论这些等式的等式理论的可决性。我们证明了对于四种全代数,急切等式和谨慎等式是可判定的。我们也证明了对于其他有理数的丢番图问题是一一可计算地约化为它们的方程理论。理性的丢番图问题是一个长期存在的开放性问题。因此,渴望相等具有本质上不那么复杂的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信