Theoretical analysis and numerical approximation for the stochastic thermal quasi-geostrophic model

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Dan Crisan, Darryl D. Holm, Oana Lang, Prince Romeo Mensah, Wei Pan
{"title":"Theoretical analysis and numerical approximation for the stochastic thermal quasi-geostrophic model","authors":"Dan Crisan, Darryl D. Holm, Oana Lang, Prince Romeo Mensah, Wei Pan","doi":"10.1142/s0219493723500399","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the mathematical properties of a stochastic version of the balanced 2D thermal quasigeostrophic (TQG) model of potential vorticity dynamics. This stochastic TQG model is intended as a basis for parametrization of the dynamical creation of unresolved degrees of freedom in computational simulations of upper ocean dynamics when horizontal buoyancy gradients and bathymetry affect the dynamics, particularly at the submesoscale (250<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>m–10<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>km). Specifically, we have chosen the Stochastic Advection by Lie Transport (SALT) algorithm introduced in [D. D. Holm, Variational principles for stochastic fluid dynamics, <i>Proc. Roy. Soc. A: Math. Phys. Eng. Sci.</i><b>471</b> (2015) 20140963, http://dx.doi.org/10.1098/rspa.2014.0963] and applied in [C. Cotter, D. Crisan, D. Holm, W. Pan and I. Shevchenko, Modelling uncertainty using stochastic transport noise in a 2-layer quasi-geostrophic model, <i>Found. Data Sci.</i><b>2</b> (2020) 173, https://doi.org/10.3934/fods.2020010; Numerically modeling stochastic lie transport in fluid dynamics, <i>SIAM Multiscale Model. Simul.</i><b>17</b> (2019) 192–232, https://doi.org/10.1137/18M1167929] as our modeling approach. The SALT approach preserves the Kelvin circulation theorem and an infinite family of integral conservation laws for TQG. The goal of the SALT algorithm is to quantify the uncertainty in the process of up-scaling, or coarse-graining of either observed or synthetic data at fine scales, for use in computational simulations at coarser scales. The present work provides a rigorous mathematical analysis of the solution properties of the thermal quasigeostrophic (TQG) equations with SALT [D. D. Holm and E. Luesink, Stochastic wave-current interaction in thermal shallow water dynamics, <i>J. Nonlinear Sci.</i><b>31</b> (2021), https://doi.org/10.1007/s00332-021-09682-9; D. D. Holm, E. Luesink and W. Pan, Stochastic mesoscale circulation dynamics in the thermal ocean, <i>Phys. Fluids</i><b>33</b> (2021) 046603, https://doi.org/10.1063/5.0040026].</p>","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493723500399","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the mathematical properties of a stochastic version of the balanced 2D thermal quasigeostrophic (TQG) model of potential vorticity dynamics. This stochastic TQG model is intended as a basis for parametrization of the dynamical creation of unresolved degrees of freedom in computational simulations of upper ocean dynamics when horizontal buoyancy gradients and bathymetry affect the dynamics, particularly at the submesoscale (250m–10km). Specifically, we have chosen the Stochastic Advection by Lie Transport (SALT) algorithm introduced in [D. D. Holm, Variational principles for stochastic fluid dynamics, Proc. Roy. Soc. A: Math. Phys. Eng. Sci.471 (2015) 20140963, http://dx.doi.org/10.1098/rspa.2014.0963] and applied in [C. Cotter, D. Crisan, D. Holm, W. Pan and I. Shevchenko, Modelling uncertainty using stochastic transport noise in a 2-layer quasi-geostrophic model, Found. Data Sci.2 (2020) 173, https://doi.org/10.3934/fods.2020010; Numerically modeling stochastic lie transport in fluid dynamics, SIAM Multiscale Model. Simul.17 (2019) 192–232, https://doi.org/10.1137/18M1167929] as our modeling approach. The SALT approach preserves the Kelvin circulation theorem and an infinite family of integral conservation laws for TQG. The goal of the SALT algorithm is to quantify the uncertainty in the process of up-scaling, or coarse-graining of either observed or synthetic data at fine scales, for use in computational simulations at coarser scales. The present work provides a rigorous mathematical analysis of the solution properties of the thermal quasigeostrophic (TQG) equations with SALT [D. D. Holm and E. Luesink, Stochastic wave-current interaction in thermal shallow water dynamics, J. Nonlinear Sci.31 (2021), https://doi.org/10.1007/s00332-021-09682-9; D. D. Holm, E. Luesink and W. Pan, Stochastic mesoscale circulation dynamics in the thermal ocean, Phys. Fluids33 (2021) 046603, https://doi.org/10.1063/5.0040026].

随机热准地转模式的理论分析与数值逼近
本文研究了位涡动力学平衡二维热准地转(TQG)随机模型的数学性质。当水平浮力梯度和水深测量影响上层海洋动力学时,特别是在亚中尺度(250m-10km),该随机TQG模型旨在作为上层海洋动力学计算模拟中未解决自由度动力学参数化的基础。具体而言,我们选择了[D]中介绍的随机平流by Lie Transport (SALT)算法。D. Holm,随机流体动力学的变分原理,罗伊出版社。Soc。答:数学。理论物理。Eng。Sci.471 (2015) 20140963, http://dx.doi.org/10.1098/rspa.2014.0963],并应用于[C]。Cotter, D. Crisan, D. Holm, W. Pan和I. Shevchenko,在2层准地转模型中使用随机输运噪声建模不确定性,发现。数据科学2 (2020)173,https://doi.org/10.3934/fods.2020010;流体动力学中随机lie输运的数值模拟,SIAM多尺度模型。Simul.17 (2019) 192-232, https://doi.org/10.1137/18M1167929]作为我们的建模方法。SALT方法保留了开尔文循环定理和TQG的无穷一族积分守恒定律。SALT算法的目标是量化放大过程中的不确定性,或者在精细尺度上对观测数据或合成数据进行粗粒度处理,以便在更大尺度上进行计算模拟。本文对含SALT的热准地转(TQG)方程的解性质进行了严格的数学分析[D]。D. Holm和E. Luesink,热浅水动力学随机波流相互作用[j] .非线性科学31 (2021),https://doi.org/10.1007/s00332-021-09682-9;黄晓明,黄晓明,黄晓明,热海洋随机中尺度环流动力学,物理学报。流体学报,33 (2021)046603,https://doi.org/10.1063/5.0040026]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信