Most numbers are not normal

IF 0.6 3区 数学 Q3 MATHEMATICS
ANDREA AVENI, PAOLO LEONETTI
{"title":"Most numbers are not normal","authors":"ANDREA AVENI, PAOLO LEONETTI","doi":"10.1017/s0305004122000469","DOIUrl":null,"url":null,"abstract":"<p>We show, from a topological viewpoint, that most numbers are not normal in a strong sense. More precisely, the set of numbers <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230612115128646-0745:S0305004122000469:S0305004122000469_inline1.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$x \\in (0,1]$\n</span></span>\n</span>\n</span> with the following property is comeager: for all integers <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230612115128646-0745:S0305004122000469:S0305004122000469_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$b\\ge 2$\n</span></span>\n</span>\n</span> and <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230612115128646-0745:S0305004122000469:S0305004122000469_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$k\\ge 1$\n</span></span>\n</span>\n</span>, the sequence of vectors made by the frequencies of all possibile strings of length <span>k</span> in the <span>b</span>-adic representation of <span>x</span> has a maximal subset of accumulation points, and each of them is the limit of a subsequence with an index set of nonzero asymptotic density. This extends and provides a streamlined proof of the main result given by Olsen (2004) in this Journal. We provide analogues in the context of analytic P-ideals and regular matrices.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"69 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004122000469","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show, from a topological viewpoint, that most numbers are not normal in a strong sense. More precisely, the set of numbers Abstract Image $x \in (0,1]$ with the following property is comeager: for all integers Abstract Image $b\ge 2$ and Abstract Image $k\ge 1$ , the sequence of vectors made by the frequencies of all possibile strings of length k in the b-adic representation of x has a maximal subset of accumulation points, and each of them is the limit of a subsequence with an index set of nonzero asymptotic density. This extends and provides a streamlined proof of the main result given by Olsen (2004) in this Journal. We provide analogues in the context of analytic P-ideals and regular matrices.

大多数数字都不正常
我们从拓扑学的观点证明,大多数数在强意义上是不正常的。更准确地说,具有以下性质的数字集$x \in(0,1]$是可聚的:对于所有整数$b\ge 2$和$k\ge 1$,由x的b进表示中长度为k的所有可能字符串的频率组成的向量序列有一个最大的累加点子集,并且每个累加点都是具有非零渐近密度索引集的子序列的极限。这扩展并提供了Olsen(2004)在本刊中给出的主要结果的简化证明。我们在解析p理想和正则矩阵的背景下提供类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信