Slide polynomials and subword complexes

IF 0.8 4区 数学 Q2 MATHEMATICS
Sbornik Mathematics Pub Date : 2021-12-14 DOI:10.1070/sm9477
E. Yu. Smirnov, A. A. Tutubalina
{"title":"Slide polynomials and subword complexes","authors":"E. Yu. Smirnov, A. A. Tutubalina","doi":"10.1070/sm9477","DOIUrl":null,"url":null,"abstract":"<p> Subword complexes were defined by Knutson and Miller in 2004 to describe Grbner degenerations of matrix Schubert varieties. Subword complexes of a certain type are called pipe dream complexes. The facets of such a complex are indexed by pipe dreams, or, equivalently, by monomials in the corresponding Schubert polynomial. In 2017 Assaf and Searles defined a basis of slide polynomials, generalizing Stanley symmetric functions, and described a combinatorial rule for expanding Schubert polynomials in this basis. We describe a decomposition of subword complexes into strata called slide complexes. The slide complexes appearing in such a way are shown to be homeomorphic to balls or spheres. For pipe dream complexes, such strata correspond to slide polynomials. </p>\n<p> Bibliography: 14 titles. </p>","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/sm9477","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Subword complexes were defined by Knutson and Miller in 2004 to describe Grbner degenerations of matrix Schubert varieties. Subword complexes of a certain type are called pipe dream complexes. The facets of such a complex are indexed by pipe dreams, or, equivalently, by monomials in the corresponding Schubert polynomial. In 2017 Assaf and Searles defined a basis of slide polynomials, generalizing Stanley symmetric functions, and described a combinatorial rule for expanding Schubert polynomials in this basis. We describe a decomposition of subword complexes into strata called slide complexes. The slide complexes appearing in such a way are shown to be homeomorphic to balls or spheres. For pipe dream complexes, such strata correspond to slide polynomials.

Bibliography: 14 titles.

滑动多项式和子词复合体
子词复合体由Knutson和Miller于2004年定义,用于描述矩阵Schubert变的Grbner退化。某种类型的子词复合体被称为白日梦复合体。这样一个复合体的面由白日梦索引,或者,等价地,由相应的舒伯特多项式中的单项式索引。2017年,Assaf和Searles定义了slide多项式的基,推广了Stanley对称函数,并描述了在此基上展开Schubert多项式的组合规则。我们描述了子词复合体分解成称为滑动复合体的地层。以这种方式出现的滑动配合物被证明是与球或球体同胚的。对于白日梦复合体,这样的地层对应于滑动多项式。参考书目:14篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sbornik Mathematics
Sbornik Mathematics 数学-数学
CiteScore
1.40
自引率
12.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in: Mathematical analysis Ordinary differential equations Partial differential equations Mathematical physics Geometry Algebra Functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信