An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Satoh, Akira, Kashimoto, Rena, Ohashi, Ayaka, Furukawa, Saya, Yamamoto, Sakiya, Inoue, Takeshi, Hayashi, Toshinori, Agata, Kiyokazu
{"title":"An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration","authors":"Satoh, Akira, Kashimoto, Rena, Ohashi, Ayaka, Furukawa, Saya, Yamamoto, Sakiya, Inoue, Takeshi, Hayashi, Toshinori, Agata, Kiyokazu","doi":"10.1186/s40851-022-00190-6","DOIUrl":null,"url":null,"abstract":"Urodele amphibians, Pleurodeles waltl and Ambystoma mexicanum, have organ-level regeneration capability, such as limb regeneration. Multipotent cells are induced by an endogenous mechanism in amphibian limb regeneration. It is well known that dermal fibroblasts receive regenerative signals and turn into multipotent cells, called blastema cells. However, the induction mechanism of the blastema cells from matured dermal cells was unknown. We previously found that BMP2, FGF2, and FGF8 (B2FF) could play sufficient roles in blastema induction in urodele amphibians. Here, we show that B2FF treatment can induce dermis-derived cells that can participate in multiple cell lineage in limb regeneration. We first established a newt dermis-derived cell line and confirmed that B2FF treatment on the newt cells provided plasticity in cellular differentiation in limb regeneration. To clarify the factors that can provide the plasticity in differentiation, we performed the interspecies comparative analysis between newt cells and mouse cells and found the Pde4b gene was upregulated by B2FF treatment only in the newt cells. Blocking PDE4B signaling by a chemical PDE4 inhibitor suppressed dermis-to-cartilage transformation and the mosaic knockout animals showed consistent results. Our results are a valuable insight into how dermal fibroblasts acquire multipotency during the early phase of limb regeneration via an endogenous program in amphibian limb regeneration.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-022-00190-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Urodele amphibians, Pleurodeles waltl and Ambystoma mexicanum, have organ-level regeneration capability, such as limb regeneration. Multipotent cells are induced by an endogenous mechanism in amphibian limb regeneration. It is well known that dermal fibroblasts receive regenerative signals and turn into multipotent cells, called blastema cells. However, the induction mechanism of the blastema cells from matured dermal cells was unknown. We previously found that BMP2, FGF2, and FGF8 (B2FF) could play sufficient roles in blastema induction in urodele amphibians. Here, we show that B2FF treatment can induce dermis-derived cells that can participate in multiple cell lineage in limb regeneration. We first established a newt dermis-derived cell line and confirmed that B2FF treatment on the newt cells provided plasticity in cellular differentiation in limb regeneration. To clarify the factors that can provide the plasticity in differentiation, we performed the interspecies comparative analysis between newt cells and mouse cells and found the Pde4b gene was upregulated by B2FF treatment only in the newt cells. Blocking PDE4B signaling by a chemical PDE4 inhibitor suppressed dermis-to-cartilage transformation and the mosaic knockout animals showed consistent results. Our results are a valuable insight into how dermal fibroblasts acquire multipotency during the early phase of limb regeneration via an endogenous program in amphibian limb regeneration.
两栖动物肢体再生中真皮成纤维细胞去分化的研究进展
尾纲两栖动物,侧耳侧耳和墨西哥Ambystoma mexicanum,具有器官水平的再生能力,如肢体再生。多能细胞是由内源性机制诱导的两栖动物肢体再生。众所周知,真皮成纤维细胞接受再生信号并转化为多能细胞,称为胚母细胞。然而,成熟真皮细胞诱导成胚细胞的机制尚不清楚。我们之前发现BMP2、FGF2和FGF8 (B2FF)在尾形两栖动物的胚诱导中发挥了足够的作用。在这里,我们发现B2FF处理可以诱导真皮来源的细胞参与多细胞谱系的肢体再生。我们首先建立了蝾螈真皮来源的细胞系,并证实了B2FF处理的蝾螈细胞在肢体再生中具有细胞分化的可塑性。为了明确提供分化可塑性的因素,我们对蝾螈细胞和小鼠细胞进行了种间比较分析,发现Pde4b基因在B2FF处理下仅在蝾螈细胞中上调。化学PDE4B抑制剂阻断PDE4B信号传导抑制真皮到软骨的转化和马赛克敲除动物显示一致的结果。我们的研究结果对皮肤成纤维细胞如何通过两栖动物肢体再生的内源性程序在肢体再生的早期阶段获得多能性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信