{"title":"Overexpression of the TaEXPA19 gene improves low-temperature tolerance in winter wheat (Triticum aestivum)","authors":"Fei Li, Baozhong Hu, Lina Peng, Xu Feng, Yu Miao, Jiamin Dong, Mingjing Wang, Xu Wang, Fenglan Li, Yongqing Xu","doi":"10.1111/pbr.13152","DOIUrl":null,"url":null,"abstract":"Low temperature is one of the main abiotic stresses that affects plant growth, causing serious damage or even death to plants. The differential expression of the <i>TaEXPA19</i> gene in the above and underground parts of winter wheat and the implications for cold resistance remain unclear. In this study, the <i>TaEXPA19</i> gene was cloned and analysed for expression in winter wheat, and transgenic <i>Arabidopsis thaliana</i> was constructed to investigate the effect of the <i>TaEXPA19</i> gene in response to low-temperature stress on plant growth. The <i>TaEXPA19-A</i> and <i>TaEXPA19-D</i> genes have different response patterns in the above and underground parts of transgeni<i>c A. thaliana</i>. When plants were subjected to low-temperature stress, the leaves were quickly upregulated and the roots were downregulated, and then upregulated to respond to low-temperature stress to promote the growth of leaf length and leaf width petiole length. The results indicated that <i>TaEXPA19</i> genes could improve low-temperature tolerance in plants. The results of this study laid a foundation for the study of the cold resistance of winter wheat.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"372 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/pbr.13152","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Low temperature is one of the main abiotic stresses that affects plant growth, causing serious damage or even death to plants. The differential expression of the TaEXPA19 gene in the above and underground parts of winter wheat and the implications for cold resistance remain unclear. In this study, the TaEXPA19 gene was cloned and analysed for expression in winter wheat, and transgenic Arabidopsis thaliana was constructed to investigate the effect of the TaEXPA19 gene in response to low-temperature stress on plant growth. The TaEXPA19-A and TaEXPA19-D genes have different response patterns in the above and underground parts of transgenic A. thaliana. When plants were subjected to low-temperature stress, the leaves were quickly upregulated and the roots were downregulated, and then upregulated to respond to low-temperature stress to promote the growth of leaf length and leaf width petiole length. The results indicated that TaEXPA19 genes could improve low-temperature tolerance in plants. The results of this study laid a foundation for the study of the cold resistance of winter wheat.
期刊介绍:
PLANT BREEDING publishes full-length original manuscripts and review articles on all aspects of plant improvement, breeding methodologies, and genetics to include qualitative and quantitative inheritance and genomics of major crop species. PLANT BREEDING provides readers with cutting-edge information on use of molecular techniques and genomics as they relate to improving gain from selection. Since its subject matter embraces all aspects of crop improvement, its content is sought after by both industry and academia. Fields of interest: Genetics of cultivated plants as well as research in practical plant breeding.