Carlos A. Alvarado, Tristan Ozuch, Daniel A. Santiago
{"title":"Families of degenerating Poincaré–Einstein metrics on \\(\\mathbb {R}^4\\)","authors":"Carlos A. Alvarado, Tristan Ozuch, Daniel A. Santiago","doi":"10.1007/s10455-023-09923-y","DOIUrl":null,"url":null,"abstract":"<div><p>We provide the first example of continuous families of Poincaré–Einstein metrics developing cusps on the trivial topology <span>\\(\\mathbb {R}^4\\)</span>. We also exhibit families of metrics with unexpected degenerations in their conformal infinity only. These are obtained from the Riemannian version of an ansatz of Debever and Plebański–Demiański. We additionally indicate how to construct similar examples on more complicated topologies.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09923-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09923-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We provide the first example of continuous families of Poincaré–Einstein metrics developing cusps on the trivial topology \(\mathbb {R}^4\). We also exhibit families of metrics with unexpected degenerations in their conformal infinity only. These are obtained from the Riemannian version of an ansatz of Debever and Plebański–Demiański. We additionally indicate how to construct similar examples on more complicated topologies.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.