Families of degenerating Poincaré–Einstein metrics on \(\mathbb {R}^4\)

IF 0.6 3区 数学 Q3 MATHEMATICS
Carlos A. Alvarado, Tristan Ozuch, Daniel A. Santiago
{"title":"Families of degenerating Poincaré–Einstein metrics on \\(\\mathbb {R}^4\\)","authors":"Carlos A. Alvarado,&nbsp;Tristan Ozuch,&nbsp;Daniel A. Santiago","doi":"10.1007/s10455-023-09923-y","DOIUrl":null,"url":null,"abstract":"<div><p>We provide the first example of continuous families of Poincaré–Einstein metrics developing cusps on the trivial topology <span>\\(\\mathbb {R}^4\\)</span>. We also exhibit families of metrics with unexpected degenerations in their conformal infinity only. These are obtained from the Riemannian version of an ansatz of Debever and Plebański–Demiański. We additionally indicate how to construct similar examples on more complicated topologies.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09923-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09923-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide the first example of continuous families of Poincaré–Einstein metrics developing cusps on the trivial topology \(\mathbb {R}^4\). We also exhibit families of metrics with unexpected degenerations in their conformal infinity only. These are obtained from the Riemannian version of an ansatz of Debever and Plebański–Demiański. We additionally indicate how to construct similar examples on more complicated topologies.

Abstract Image

简并的庞加莱姆-爱因斯坦度量的族 $$\mathbb {R}^4$$
我们提供了在平凡拓扑\(\mathbb {R}^4\)上发展尖点的连续族poincar - -爱因斯坦度量的第一个例子。我们还展示了仅在保形无穷处具有意外退化的度量族。这些是从Debever和Plebański-Demiański的黎曼版本的ansatz中获得的。我们还指出了如何在更复杂的拓扑结构上构造类似的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信