{"title":"Limiting Distributions for a Class of Super-Brownian Motions with Spatially Dependent Branching Mechanisms","authors":"Yan-Xia Ren, Ting Yang","doi":"10.1007/s10959-023-01304-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a large class of super-Brownian motions in <span>\\({\\mathbb {R}}\\)</span> with spatially dependent branching mechanisms. We establish the almost sure growth rate of the mass located outside a time-dependent interval <span>\\((-\\delta t,\\delta t)\\)</span> for <span>\\(\\delta >0\\)</span>. The growth rate is given in terms of the principal eigenvalue <span>\\(\\lambda _{1}\\)</span> of the Schrödinger-type operator associated with the branching mechanism. From this result, we see the existence of phase transition for the growth order at <span>\\(\\delta =\\sqrt{\\lambda _{1}/2}\\)</span>. We further show that the super-Brownian motion shifted by <span>\\(\\sqrt{\\lambda _{1}/2}\\,t\\)</span> converges in distribution to a random measure with random density mixed by a martingale limit.</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"58 6","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-023-01304-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a large class of super-Brownian motions in \({\mathbb {R}}\) with spatially dependent branching mechanisms. We establish the almost sure growth rate of the mass located outside a time-dependent interval \((-\delta t,\delta t)\) for \(\delta >0\). The growth rate is given in terms of the principal eigenvalue \(\lambda _{1}\) of the Schrödinger-type operator associated with the branching mechanism. From this result, we see the existence of phase transition for the growth order at \(\delta =\sqrt{\lambda _{1}/2}\). We further show that the super-Brownian motion shifted by \(\sqrt{\lambda _{1}/2}\,t\) converges in distribution to a random measure with random density mixed by a martingale limit.
期刊介绍:
Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.