{"title":"$$L^p$$ - $$L^q$$ Boundedness of Fourier Multipliers Associated with the Anharmonic Oscillator","authors":"Marianna Chatzakou, Vishvesh Kumar","doi":"10.1007/s00041-023-10047-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> boundedness of the Fourier multipliers in the setting where the underlying Fourier analysis is introduced with respect to the eigenfunctions of an anharmonic oscillator <i>A</i>. Using the notion of a global symbol that arises from this analysis, we extend a version of the Hausdorff–Young–Paley inequality that guarantees the <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> boundedness of these operators for the range <span>\\(1<p \\le 2 \\le q <\\infty \\)</span>. The boundedness results for spectral multipliers acquired, yield as particular cases Sobolev embedding theorems and time asymptotics for the <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> norms of the heat kernel associated with the anharmonic oscillator. Additionally, we consider functions <i>f</i>(<i>A</i>) of the anharmonic oscillator on modulation spaces and prove that Linskĭi’s trace formula holds true even when <i>f</i>(<i>A</i>) is simply a nuclear operator.</p>","PeriodicalId":15993,"journal":{"name":"Journal of Fourier Analysis and Applications","volume":"691 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fourier Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-023-10047-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper we study the \(L^p\)-\(L^q\) boundedness of the Fourier multipliers in the setting where the underlying Fourier analysis is introduced with respect to the eigenfunctions of an anharmonic oscillator A. Using the notion of a global symbol that arises from this analysis, we extend a version of the Hausdorff–Young–Paley inequality that guarantees the \(L^p\)-\(L^q\) boundedness of these operators for the range \(1<p \le 2 \le q <\infty \). The boundedness results for spectral multipliers acquired, yield as particular cases Sobolev embedding theorems and time asymptotics for the \(L^p\)-\(L^q\) norms of the heat kernel associated with the anharmonic oscillator. Additionally, we consider functions f(A) of the anharmonic oscillator on modulation spaces and prove that Linskĭi’s trace formula holds true even when f(A) is simply a nuclear operator.
期刊介绍:
The Journal of Fourier Analysis and Applications will publish results in Fourier analysis, as well as applicable mathematics having a significant Fourier analytic component. Appropriate manuscripts at the highest research level will be accepted for publication. Because of the extensive, intricate, and fundamental relationship between Fourier analysis and so many other subjects, selected and readable surveys will also be published. These surveys will include historical articles, research tutorials, and expositions of specific topics.
TheJournal of Fourier Analysis and Applications will provide a perspective and means for centralizing and disseminating new information from the vantage point of Fourier analysis. The breadth of Fourier analysis and diversity of its applicability require that each paper should contain a clear and motivated introduction, which is accessible to all of our readers.
Areas of applications include the following:
antenna theory * crystallography * fast algorithms * Gabor theory and applications * image processing * number theory * optics * partial differential equations * prediction theory * radar applications * sampling theory * spectral estimation * speech processing * stochastic processes * time-frequency analysis * time series * tomography * turbulence * uncertainty principles * wavelet theory and applications