{"title":"Generalized Abel equations and applications to translation invariant Radon transforms","authors":"James W. Webber","doi":"10.1515/jiip-2023-0049","DOIUrl":null,"url":null,"abstract":"Generalized Abel equations have been employed in the recent literature to invert Radon transforms which arise in a number of important imaging applications, including Compton Scatter Tomography (CST), Ultrasound Reflection Tomography (URT), and X-ray CT. In this paper, we present novel injectivity results and inversion methods for generalized Abel operators. We apply our theory to a new Radon transform, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">R</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0049_ineq_0001.png\" /> <jats:tex-math>\\mathcal{R}_{j}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, of interest in URT, which integrates a square integrable function of compact support, 𝑓, over ellipsoid and hyperboloid surfaces with centers on a plane. Using our newly established theory on generalized Abel equations, we show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"script\">R</m:mi> <m:mi>j</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0049_ineq_0001.png\" /> <jats:tex-math>\\mathcal{R}_{j}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is injective and provide an inversion method based on Neumann series. In addition, using algebraic methods, we present image phantom reconstructions from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi mathvariant=\"script\">R</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo></m:mo> <m:mi>f</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2023-0049_ineq_0003.png\" /> <jats:tex-math>\\mathcal{R}_{j}f</jats:tex-math> </jats:alternatives> </jats:inline-formula> data with added pseudo-random noise.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"193 ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2023-0049","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Generalized Abel equations have been employed in the recent literature to invert Radon transforms which arise in a number of important imaging applications, including Compton Scatter Tomography (CST), Ultrasound Reflection Tomography (URT), and X-ray CT. In this paper, we present novel injectivity results and inversion methods for generalized Abel operators. We apply our theory to a new Radon transform, Rj\mathcal{R}_{j}, of interest in URT, which integrates a square integrable function of compact support, 𝑓, over ellipsoid and hyperboloid surfaces with centers on a plane. Using our newly established theory on generalized Abel equations, we show that Rj\mathcal{R}_{j} is injective and provide an inversion method based on Neumann series. In addition, using algebraic methods, we present image phantom reconstructions from Rjf\mathcal{R}_{j}f data with added pseudo-random noise.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography