Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang
{"title":"Improved bounds for the sunflower lemma | Annals of Mathematics","authors":"Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang","doi":"10.4007/annals.2021.194.3.5","DOIUrl":null,"url":null,"abstract":"<p> A sunflower with $r$ petals is a collection of $r$ sets so that the intersection of each pair is equal to the intersection of all of them. Erdős and Rado proved the sunflower lemma: for any fixed $r$, any family of sets of size $w$, with at least about $w^w$ sets, must contain a sunflower with $r$ petals. The famous sunflower conjecture states that the bound on the number of sets can be improved to $c^w$ for some constant $c$. In this paper, we improve the bound to about $(\\log\\, w)^w$. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is sharp up to lower order terms. </p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2021.194.3.5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A sunflower with $r$ petals is a collection of $r$ sets so that the intersection of each pair is equal to the intersection of all of them. Erdős and Rado proved the sunflower lemma: for any fixed $r$, any family of sets of size $w$, with at least about $w^w$ sets, must contain a sunflower with $r$ petals. The famous sunflower conjecture states that the bound on the number of sets can be improved to $c^w$ for some constant $c$. In this paper, we improve the bound to about $(\log\, w)^w$. In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is sharp up to lower order terms.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.