{"title":"Twists of rational Cherednik algebras","authors":"Y Bazlov, E Jones-Healey, A Mcgaw, A Berenstein","doi":"10.1093/qmath/haac033","DOIUrl":null,"url":null,"abstract":"We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups $G(m,p,n)$, when m is even. This gives a new construction of mystic reflection groups which have Artin–Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haac033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups $G(m,p,n)$, when m is even. This gives a new construction of mystic reflection groups which have Artin–Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.