Newly Released Capabilities in the Distributed-Memory SuperLU Sparse Direct Solver

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xiaoye S. Li, Paul Lin, Yang Liu, Piyush Sao
{"title":"Newly Released Capabilities in the Distributed-Memory SuperLU Sparse Direct Solver","authors":"Xiaoye S. Li, Paul Lin, Yang Liu, Piyush Sao","doi":"https://dl.acm.org/doi/10.1145/3577197","DOIUrl":null,"url":null,"abstract":"<p>We present the new features available in the recent release of <monospace>SuperLU_DIST</monospace>, Version 8.1.1. <monospace>SuperLU_DIST</monospace> is a distributed-memory parallel sparse direct solver. The new features include (1) a 3D communication-avoiding algorithm framework that trades off inter-process communication for selective memory duplication, (2) multi-GPU support for both NVIDIA GPUs and AMD GPUs, and (3) mixed-precision routines that perform single-precision LU factorization and double-precision iterative refinement. Apart from the algorithm improvements, we also modernized the software build system to use CMake and Spack package installation tools to simplify the installation procedure. Throughout the article, we describe in detail the pertinent performance-sensitive parameters associated with each new algorithmic feature, show how they are exposed to the users, and give general guidance of how to set these parameters. We illustrate that the solver’s performance both in time and memory can be greatly improved after systematic tuning of the parameters, depending on the input sparse matrix and underlying hardware.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"25 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3577197","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We present the new features available in the recent release of SuperLU_DIST, Version 8.1.1. SuperLU_DIST is a distributed-memory parallel sparse direct solver. The new features include (1) a 3D communication-avoiding algorithm framework that trades off inter-process communication for selective memory duplication, (2) multi-GPU support for both NVIDIA GPUs and AMD GPUs, and (3) mixed-precision routines that perform single-precision LU factorization and double-precision iterative refinement. Apart from the algorithm improvements, we also modernized the software build system to use CMake and Spack package installation tools to simplify the installation procedure. Throughout the article, we describe in detail the pertinent performance-sensitive parameters associated with each new algorithmic feature, show how they are exposed to the users, and give general guidance of how to set these parameters. We illustrate that the solver’s performance both in time and memory can be greatly improved after systematic tuning of the parameters, depending on the input sparse matrix and underlying hardware.

分布式内存SuperLU稀疏直接求解器新发布的功能
我们将介绍SuperLU_DIST 8.1.1版本中提供的新特性。SuperLU_DIST是一个分布式内存并行稀疏直接求解器。新功能包括(1)一个避免3D通信的算法框架,该框架可以在进程间通信中进行选择性内存复制,(2)支持NVIDIA gpu和AMD gpu的多gpu,以及(3)执行单精度LU分解和双精度迭代细化的混合精度例程。除了算法改进之外,我们还对软件构建系统进行了现代化改造,使用CMake和Spack包安装工具来简化安装过程。在本文中,我们详细描述了与每个新算法特性相关联的相关性能敏感参数,展示了如何向用户展示这些参数,并提供了如何设置这些参数的一般指导。我们证明,根据输入稀疏矩阵和底层硬件,系统调整参数后,求解器在时间和内存方面的性能都可以大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信