Truncated Log-concave Sampling for Convex Bodies with Reflective Hamiltonian Monte Carlo

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Apostolos Chalkis, Vissarion Fisikopoulos, Marios Papachristou, Elias Tsigaridas
{"title":"Truncated Log-concave Sampling for Convex Bodies with Reflective Hamiltonian Monte Carlo","authors":"Apostolos Chalkis, Vissarion Fisikopoulos, Marios Papachristou, Elias Tsigaridas","doi":"https://dl.acm.org/doi/10.1145/3589505","DOIUrl":null,"url":null,"abstract":"<p>We introduce Reflective Hamiltonian Monte Carlo (ReHMC), an HMC-based algorithm to sample from a log-concave distribution restricted to a convex body. The random walk is based on incorporating reflections to the Hamiltonian dynamics such that the support of the target density is the convex body. We develop an efficient open source implementation of ReHMC and perform an experimental study on various high-dimensional datasets. The experiments suggest that ReHMC outperforms Hit-and-Run and Coordinate-Hit-and-Run regarding the time it needs to produce an independent sample, introducing practical truncated sampling in thousands of dimensions.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"56 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3589505","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Reflective Hamiltonian Monte Carlo (ReHMC), an HMC-based algorithm to sample from a log-concave distribution restricted to a convex body. The random walk is based on incorporating reflections to the Hamiltonian dynamics such that the support of the target density is the convex body. We develop an efficient open source implementation of ReHMC and perform an experimental study on various high-dimensional datasets. The experiments suggest that ReHMC outperforms Hit-and-Run and Coordinate-Hit-and-Run regarding the time it needs to produce an independent sample, introducing practical truncated sampling in thousands of dimensions.

基于反射哈密顿蒙特卡罗的凸体截断对数凹采样
本文介绍了一种基于反射哈密顿蒙特卡罗(ReHMC)的算法,该算法从一个限制于凸体的对数凹分布中进行采样。随机漫步是基于结合哈密顿动力学的反射,使得目标密度的支撑是凸体。我们开发了一个高效的开源ReHMC实现,并在各种高维数据集上进行了实验研究。实验表明,ReHMC在产生独立样本所需的时间上优于Hit-and-Run和Coordinate-Hit-and-Run,在数千个维度上引入了实用的截断采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信