Algorithm 1032: Bi-cubic Splines for Polyhedral Control Nets

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jörg Peters, Kyle Lo, Kȩstutis Karčiauskas
{"title":"Algorithm 1032: Bi-cubic Splines for Polyhedral Control Nets","authors":"Jörg Peters, Kyle Lo, Kȩstutis Karčiauskas","doi":"https://dl.acm.org/doi/10.1145/3570158","DOIUrl":null,"url":null,"abstract":"<p>For control nets outlining a large class of topological polyhedra, not just tensor-product grids, bi-cubic polyhedral splines form a piecewise polynomial, first-order differentiable space that associates one function with each vertex. Akin to tensor-product splines, the resulting smooth surface approximates the polyhedron. Admissible polyhedral control nets consist of quadrilateral faces in a grid-like layout, star-configuration where <i>n</i> ≠ 4 quadrilateral faces join around an interior vertex, <i>n</i>-gon configurations, where <i>2n</i> quadrilaterals surround an <i>n</i>-gon, polar configurations where a cone of <i>n</i> triangles meeting at a vertex is surrounded by a ribbon of <i>n</i> quadrilaterals, and three types of T-junctions where two quad-strips merge into one. </p><p>The bi-cubic pieces of a polyhedral spline have matching derivatives along their break lines, possibly after a known change of variables. The pieces are represented in Bernstein-Bézier form with coefficients depending linearly on the polyhedral control net, so that evaluation, differentiation, integration, moments, and so on, are no more costly than for standard tensor-product splines. Bi-cubic polyhedral splines can be used both to model geometry and for computing functions on the geometry. Although polyhedral splines do not offer nested refinement by refinement of the control net, polyhedral splines support engineering analysis of curved smooth objects. Coarse nets typically suffice since the splines efficiently model curved features. Algorithm 1032 is a C++ library with input-output example pairs and an IGES output choice.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570158","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

For control nets outlining a large class of topological polyhedra, not just tensor-product grids, bi-cubic polyhedral splines form a piecewise polynomial, first-order differentiable space that associates one function with each vertex. Akin to tensor-product splines, the resulting smooth surface approximates the polyhedron. Admissible polyhedral control nets consist of quadrilateral faces in a grid-like layout, star-configuration where n ≠ 4 quadrilateral faces join around an interior vertex, n-gon configurations, where 2n quadrilaterals surround an n-gon, polar configurations where a cone of n triangles meeting at a vertex is surrounded by a ribbon of n quadrilaterals, and three types of T-junctions where two quad-strips merge into one.

The bi-cubic pieces of a polyhedral spline have matching derivatives along their break lines, possibly after a known change of variables. The pieces are represented in Bernstein-Bézier form with coefficients depending linearly on the polyhedral control net, so that evaluation, differentiation, integration, moments, and so on, are no more costly than for standard tensor-product splines. Bi-cubic polyhedral splines can be used both to model geometry and for computing functions on the geometry. Although polyhedral splines do not offer nested refinement by refinement of the control net, polyhedral splines support engineering analysis of curved smooth objects. Coarse nets typically suffice since the splines efficiently model curved features. Algorithm 1032 is a C++ library with input-output example pairs and an IGES output choice.

算法1032:多面体控制网的双三次样条
对于控制网概述了一大类拓扑多面体,而不仅仅是张量积网格,双三次多面体样条形成了一个分段多项式,一阶可微空间,将一个函数与每个顶点相关联。类似于张量积样条,得到的光滑表面近似于多面体。可接受的多面体控制网由网格状布局的四边形面组成,星形结构(n≠4个四边形面围绕一个内部顶点连接),n形结构(2n个四边形围绕一个n形),极形结构(n个三角形的圆锥在一个顶点会合,被n个四边形的带包围),以及三种类型的t形结(两个四边形合并为一个)。多面体样条的双立方块沿其断行具有匹配的导数,可能在已知变量变化之后。这些块以bernstein - bsamzier形式表示,其系数线性依赖于多面体控制网,因此评估、微分、积分、矩等并不比标准张量积样条花费更多。双三次多面体样条既可用于几何建模,也可用于几何上的函数计算。虽然多面体样条不能通过控制网的细化提供嵌套细化,但多面体样条支持曲面光滑对象的工程分析。粗网通常就足够了,因为样条可以有效地模拟曲线特征。算法1032是一个c++库,具有输入输出示例对和IGES输出选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信