David Selasi Koblah, Ulbert J. Botero, Sean P. Costello, Olivia P. Dizon-Paradis, Fatemeh Ganji, Damon L. Woodard, Domenic Forte
{"title":"A Fast Object Detection-Based Framework for Via Modeling on PCB X-Ray CT Images","authors":"David Selasi Koblah, Ulbert J. Botero, Sean P. Costello, Olivia P. Dizon-Paradis, Fatemeh Ganji, Damon L. Woodard, Domenic Forte","doi":"https://dl.acm.org/doi/10.1145/3606948","DOIUrl":null,"url":null,"abstract":"<p>For successful printed circuit board (PCB) reverse engineering (RE), the resulting device must retain the physical characteristics and functionality of the original. Although the applications of RE are within the discretion of the executing party, establishing a viable, non-destructive framework for analysis is vital for any stakeholder in the PCB industry. A widely-regarded approach in PCB RE uses non-destructive x-ray computed tomography (CT) to produce three-dimensional volumes with several slices of data corresponding to multi-layered PCBs. However, the noise sources specific to x-ray CT and variability from designers hampers the thorough acquisition of features necessary for successful RE. This article investigates a deep learning approach as a successor to the current state-of-the-art for detecting vias on PCB x-ray CT images; vias are a key building block of PCB designs. During RE, vias offer an understanding of the PCB’s electrical connections across multiple layers. Our method is an improvement on an earlier iteration which demonstrates significantly faster runtime with quality of results comparable to or better than the current state-of-the-art, unsupervised iterative Hough-based method. Compared with the Hough-based method, the current framework is 4.5 times faster for the discrete image scenario and 24.1 times faster for the volumetric image scenario. The upgrades to the prior deep learning version include faster feature-based detection for real-world usability and adaptive post-processing methods to improve the quality of detections.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"97 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3606948","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
For successful printed circuit board (PCB) reverse engineering (RE), the resulting device must retain the physical characteristics and functionality of the original. Although the applications of RE are within the discretion of the executing party, establishing a viable, non-destructive framework for analysis is vital for any stakeholder in the PCB industry. A widely-regarded approach in PCB RE uses non-destructive x-ray computed tomography (CT) to produce three-dimensional volumes with several slices of data corresponding to multi-layered PCBs. However, the noise sources specific to x-ray CT and variability from designers hampers the thorough acquisition of features necessary for successful RE. This article investigates a deep learning approach as a successor to the current state-of-the-art for detecting vias on PCB x-ray CT images; vias are a key building block of PCB designs. During RE, vias offer an understanding of the PCB’s electrical connections across multiple layers. Our method is an improvement on an earlier iteration which demonstrates significantly faster runtime with quality of results comparable to or better than the current state-of-the-art, unsupervised iterative Hough-based method. Compared with the Hough-based method, the current framework is 4.5 times faster for the discrete image scenario and 24.1 times faster for the volumetric image scenario. The upgrades to the prior deep learning version include faster feature-based detection for real-world usability and adaptive post-processing methods to improve the quality of detections.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors