Automated Generation of Security Assertions for RTL Models

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hasini Witharana, Aruna Jayasena, Andrew Whigham, Prabhat Mishra
{"title":"Automated Generation of Security Assertions for RTL Models","authors":"Hasini Witharana, Aruna Jayasena, Andrew Whigham, Prabhat Mishra","doi":"https://dl.acm.org/doi/10.1145/3565801","DOIUrl":null,"url":null,"abstract":"<p>System-on-Chip (SoC) security is vital in designing trustworthy systems. Detecting and fixing a vulnerability in the early stages is easier and cost-effective. Assertion-based verification is widely used for functional validation of Register-Transfer Level (RTL) designs. Assertions can improve the controllability and observability that can lead to faster error detection and localization. Although assertions are widely used for functional validation of RTL models, there is limited effort in applying assertions to detect SoC security vulnerabilities. Specifically, a fundamental challenge in SoC security and trust validation is how to develop high-quality security assertions. In this article, we perform automated vulnerability analysis of RTL models to generate security assertions for six classes of vulnerabilities. Experimental results show that the generated security assertions can detect a wide variety of vulnerabilities. Our automated framework can drastically reduce the overall security validation effort compared to the manual development of security assertions. Automated generation of security assertions will enable assertion-based verification to be one of the most promising pre-silicon security sign-off solutions.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"98 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3565801","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

System-on-Chip (SoC) security is vital in designing trustworthy systems. Detecting and fixing a vulnerability in the early stages is easier and cost-effective. Assertion-based verification is widely used for functional validation of Register-Transfer Level (RTL) designs. Assertions can improve the controllability and observability that can lead to faster error detection and localization. Although assertions are widely used for functional validation of RTL models, there is limited effort in applying assertions to detect SoC security vulnerabilities. Specifically, a fundamental challenge in SoC security and trust validation is how to develop high-quality security assertions. In this article, we perform automated vulnerability analysis of RTL models to generate security assertions for six classes of vulnerabilities. Experimental results show that the generated security assertions can detect a wide variety of vulnerabilities. Our automated framework can drastically reduce the overall security validation effort compared to the manual development of security assertions. Automated generation of security assertions will enable assertion-based verification to be one of the most promising pre-silicon security sign-off solutions.

RTL模型安全断言的自动生成
片上系统(SoC)的安全性对于设计可靠的系统至关重要。在早期阶段检测和修复漏洞更容易,而且成本效益更高。基于断言的验证被广泛用于RTL设计的功能验证。断言可以提高可控性和可观察性,从而更快地进行错误检测和定位。尽管断言被广泛用于RTL模型的功能验证,但在应用断言检测SoC安全漏洞方面的努力有限。具体来说,SoC安全和信任验证的一个基本挑战是如何开发高质量的安全断言。在本文中,我们执行RTL模型的自动漏洞分析,为六类漏洞生成安全断言。实验结果表明,生成的安全断言可以检测到各种各样的漏洞。与手动开发安全断言相比,我们的自动化框架可以大大减少整体安全验证工作。安全断言的自动生成将使基于断言的验证成为最有前途的预硅安全签名解决方案之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems 工程技术-工程:电子与电气
CiteScore
4.80
自引率
4.50%
发文量
86
审稿时长
3 months
期刊介绍: The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system. The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信