Evidence of Random Matrix Corrections for the Large Deviations of Selberg’s Central Limit Theorem

IF 0.7 4区 数学 Q2 MATHEMATICS
E. Amzallag, L.-P. Arguin, E. Bailey, K. Huib, R. Rao
{"title":"Evidence of Random Matrix Corrections for the Large Deviations of Selberg’s Central Limit Theorem","authors":"E. Amzallag, L.-P. Arguin, E. Bailey, K. Huib, R. Rao","doi":"10.1080/10586458.2021.2011806","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>Selberg’s central limit theorem states that the values of <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0001.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0001.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mtext>log</mtext><mo> </mo><mo>|</mo><mi>ζ</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi mathvariant=\"normal\">i</mi><mi>τ</mi><mo stretchy=\"false\">)</mo><mo>|</mo></mrow></math></span>, where <i>τ</i> is a uniform random variable on <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0002.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0002.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mo stretchy=\"false\">[</mo><mi>T</mi><mo>,</mo><mn>2</mn><mi>T</mi><mo stretchy=\"false\">]</mo></mrow></math></span>, are asymptotically distributed like a Gaussian random variable of mean 0 and standard deviation <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0003.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0003.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><msqrt><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></msqrt></mrow></math></span>. It was conjectured by Radziwiłł that this distribution breaks down for values of order <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0004.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0004.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></math></span>, where a multiplicative correction <i>C<sub>k</sub></i> would be present at level <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0005.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0005.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mi>k</mi><mo> </mo><mtext>log</mtext><mo> </mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi></mrow></math></span>, <i>k</i> &gt; 0. This constant should be the same as the one conjectured by Keating and Snaith for the leading asymptotic of the <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0006.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0006.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mn>2</mn><msup><mrow><mi>k</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></mrow></math></span> moment of <i>ζ</i>. In this paper, we provide numerical and theoretical evidence for this conjecture. We propose that this correction has a significant effect on the distribution of the maximum of <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0007.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0007.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mtext>log</mtext><mo> </mo><mo>|</mo><mi>ζ</mi><mo>|</mo></mrow></math></span> in intervals of size <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0008.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0008.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><msup><mrow><mrow><mo stretchy=\"false\">(</mo><mo> </mo><mtext>log</mtext><mo> </mo><mi>T</mi><mo stretchy=\"false\">)</mo></mrow></mrow><mi>θ</mi></msup><mo>,</mo><mtext> </mtext><mi>θ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The precision of the prediction enables the numerical detection of <i>C<sub>k</sub></i> even for low <i>T</i>’s of order <span><noscript><img alt=\"\" src=\"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0009.gif\"/></noscript><img alt=\"\" data-formula-source='{\"type\" : \"image\", \"src\" : \"/na101/home/literatum/publisher/tandf/journals/content/uexm20/0/uexm20.ahead-of-print/10586458.2021.2011806/20211220/images/uexm_a_2011806_ilm0009.gif\"}' src=\"//:0\"/><span></span></span><span><img alt=\"\" data-formula-source='{\"type\" : \"mathjax\"}' src=\"//:0\"/><math display=\"inline\"><mrow><mi>T</mi><mo>=</mo><msup><mrow><mrow><mn>10</mn></mrow></mrow><mn>8</mn></msup></mrow></math></span>. A similar correction appears in the large deviations of the Keating–Snaith central limit theorem for the logarithm of the characteristic polynomial of a random unitary matrix, as first proved by Féray, Méliot and Nikeghbali.</p>","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":"269 ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2021.2011806","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Selberg’s central limit theorem states that the values of Abstract ImageAbstract Imagelog|ζ(1/2+iτ)|, where τ is a uniform random variable on Abstract ImageAbstract Image[T,2T], are asymptotically distributed like a Gaussian random variable of mean 0 and standard deviation Abstract ImageAbstract Image12loglogT. It was conjectured by Radziwiłł that this distribution breaks down for values of order Abstract ImageAbstract ImageloglogT, where a multiplicative correction Ck would be present at level Abstract ImageAbstract ImagekloglogT, k > 0. This constant should be the same as the one conjectured by Keating and Snaith for the leading asymptotic of the Abstract ImageAbstract Image2kth moment of ζ. In this paper, we provide numerical and theoretical evidence for this conjecture. We propose that this correction has a significant effect on the distribution of the maximum of Abstract ImageAbstract Imagelog|ζ| in intervals of size Abstract ImageAbstract Image(logT)θ,θ>0. The precision of the prediction enables the numerical detection of Ck even for low T’s of order Abstract ImageAbstract ImageT=108. A similar correction appears in the large deviations of the Keating–Snaith central limit theorem for the logarithm of the characteristic polynomial of a random unitary matrix, as first proved by Féray, Méliot and Nikeghbali.

Selberg中心极限定理大偏差的随机矩阵修正证据
【摘要】selberg中心极限定理指出,当τ为[T,2T]上的均匀随机变量时,log |ζ(1/2+iτ)|的值近似于均值为0,标准差为12log log T的高斯随机变量,渐近分布。根据Radziwiłł的推测,这种分布在log log T阶的情况下会被打破,在k log log T, k > 0的水平上会出现一个乘法修正Ck。这个常数应该与Keating和Snaith对ζ的第20阶矩的首渐近所推测的常数相同。在本文中,我们为这一猜想提供了数值和理论证据。我们认为这种修正对log |ζ|在大小为(log T)θ, θ>0的区间内的最大值的分布有显著的影响。预测的精度使得即使在T=108阶的低T下也能对Ck进行数值检测。一个类似的修正出现在随机酉矩阵特征多项式对数的Keating-Snaith中心极限定理的大偏差中,这是由fsamray, msamliot和Nikeghbali首先证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Mathematics
Experimental Mathematics 数学-数学
CiteScore
1.70
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses. Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results. Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信