On the Special Identities of Gelfand–Dorfman Algebras

Pub Date : 2022-03-21 DOI:10.1080/10586458.2022.2041134
P. S. Kolesnikov, B. K. Sartayev
{"title":"On the Special Identities of Gelfand–Dorfman Algebras","authors":"P. S. Kolesnikov, B. K. Sartayev","doi":"10.1080/10586458.2022.2041134","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>A Gelfand–Dorfman algebra (GD-algebra) is said to be special if it can be embedded into a differential Poisson algebra. In this paper, we prove that the class of all special GD-algebras is closed with respect to homomorphisms and thus forms a variety. We describe a technique for finding potentially all special identities of GD-algebras and derive two known special identities of degree 4 in this way. By computing the Gröbner basis for the corresponding shuffle operad, we show that these two identities imply all special ones up to degree 5.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2022.2041134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A Gelfand–Dorfman algebra (GD-algebra) is said to be special if it can be embedded into a differential Poisson algebra. In this paper, we prove that the class of all special GD-algebras is closed with respect to homomorphisms and thus forms a variety. We describe a technique for finding potentially all special identities of GD-algebras and derive two known special identities of degree 4 in this way. By computing the Gröbner basis for the corresponding shuffle operad, we show that these two identities imply all special ones up to degree 5.

分享
查看原文
Gelfand-Dorfman代数的特殊恒等式
如果Gelfand-Dorfman代数(gd -代数)可以嵌入到微分泊松代数中,那么它就是特殊代数。在本文中,我们证明了所有特殊的gd -代数的类在同态上是闭的,从而形成了一个变种。我们描述了一种寻找可能所有的gd -代数特殊恒等式的技术,并以此方法导出了两个已知的4次特殊恒等式。通过计算相应shuffle操作的Gröbner基,我们证明了这两个恒等式包含了5次以下的所有特殊恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信