An efficient algorithm to solve damped forced oscillator problems by Bernoulli operational matrix of integration

Mithilesh Singh, Seema Sharma, Sunil Rawan
{"title":"An efficient algorithm to solve damped forced oscillator problems by Bernoulli operational matrix of integration","authors":"Mithilesh Singh, Seema Sharma, Sunil Rawan","doi":"10.1186/s42787-021-00115-w","DOIUrl":null,"url":null,"abstract":"An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives was obtained in Yang and Srivastava (Commun Nonlinear Sci Numer Simul 29(1–3):499–504, 2015). In this paper, we obtain the numerical solution of damped forced oscillator problems by employing the operational matrix of integration of Bernoulli orthonormal polynomials. The operational matrix of integration is determined with the help of the integral operator on Bernoulli orthonormal polynomials. Numerical examples of two different problems of spring are given to delineate the performance and perfection of this approach and compared the results with the exact solution.","PeriodicalId":33345,"journal":{"name":"Journal of the Egyptian Mathematical Society","volume":"66 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Egyptian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42787-021-00115-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives was obtained in Yang and Srivastava (Commun Nonlinear Sci Numer Simul 29(1–3):499–504, 2015). In this paper, we obtain the numerical solution of damped forced oscillator problems by employing the operational matrix of integration of Bernoulli orthonormal polynomials. The operational matrix of integration is determined with the help of the integral operator on Bernoulli orthonormal polynomials. Numerical examples of two different problems of spring are given to delineate the performance and perfection of this approach and compared the results with the exact solution.
用伯努利积分运算矩阵求解阻尼强迫振子问题的一种有效算法
Yang和Srivastava(公共非线性科学学报,29(1-3):499 - 504,2015)给出了分形介质中由局部分数阶导数描述的自由阻尼线性振子的渐近摄动解。本文利用伯努利标准正交多项式积分的运算矩阵,得到了阻尼强迫振子问题的数值解。利用伯努利标准正交多项式上的积分算子确定了积分的运算矩阵。给出了两个不同的弹簧问题的数值算例,说明了该方法的性能和完善性,并将结果与精确解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信