On $$\psi _{{\mathcal{H}}}( . )$$-operator in weak structure spaces with hereditary classes

H. M. Abu-Donia, Rodyna A. Hosny
{"title":"On $$\\psi _{{\\mathcal{H}}}( . )$$-operator in weak structure spaces with hereditary classes","authors":"H. M. Abu-Donia, Rodyna A. Hosny","doi":"10.1186/s42787-020-00107-2","DOIUrl":null,"url":null,"abstract":"Weak structure space (briefly, wss ) has master looks, when the whole space is not open, and these classes of subsets are not closed under arbitrary unions and finite intersections, which classify it from typical topology. Our main target of this article is to introduce $$\\psi _{{\\mathcal {H}}}(.)$$ ψ H ( . ) -operator in hereditary class weak structure space (briefly, $${\\mathcal {H}}wss$$ H w s s ) $$(X, w, {\\mathcal {H}})$$ ( X , w , H ) and examine a number of its characteristics. Additionally, we clarify some relations that are credible in topological spaces but cannot be realized in generalized ones. As a generalization of w -open sets and w -semiopen sets, certain new kind of sets in a weak structure space via $$\\psi _{{\\mathcal {H}}}(.)$$ ψ H ( . ) -operator called $$\\psi _{{\\mathcal {H}}}$$ ψ H -semiopen sets are introduced. We prove that the family of $$\\psi _{{\\mathcal {H}}}$$ ψ H -semiopen sets composes a supra-topology on X . In view of hereditary class $${\\mathcal {H}}_{0}$$ H 0 , $$w T_{1}$$ w T 1 -axiom is formulated and also some of their features are investigated.","PeriodicalId":33345,"journal":{"name":"Journal of the Egyptian Mathematical Society","volume":"63 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Egyptian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42787-020-00107-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Weak structure space (briefly, wss ) has master looks, when the whole space is not open, and these classes of subsets are not closed under arbitrary unions and finite intersections, which classify it from typical topology. Our main target of this article is to introduce $$\psi _{{\mathcal {H}}}(.)$$ ψ H ( . ) -operator in hereditary class weak structure space (briefly, $${\mathcal {H}}wss$$ H w s s ) $$(X, w, {\mathcal {H}})$$ ( X , w , H ) and examine a number of its characteristics. Additionally, we clarify some relations that are credible in topological spaces but cannot be realized in generalized ones. As a generalization of w -open sets and w -semiopen sets, certain new kind of sets in a weak structure space via $$\psi _{{\mathcal {H}}}(.)$$ ψ H ( . ) -operator called $$\psi _{{\mathcal {H}}}$$ ψ H -semiopen sets are introduced. We prove that the family of $$\psi _{{\mathcal {H}}}$$ ψ H -semiopen sets composes a supra-topology on X . In view of hereditary class $${\mathcal {H}}_{0}$$ H 0 , $$w T_{1}$$ w T 1 -axiom is formulated and also some of their features are investigated.
具有遗传类的弱结构空间中的$$\psi _{{\mathcal{H}}}( . )$$ -算子
弱结构空间(简称wss)在整个空间不开放的情况下具有master外观,并且这类子集在任意并和有限交下不闭合,从而将其与典型拓扑区分开来。本文的主要目标是介绍$$\psi _{{\mathcal {H}}}(.)$$ ψ H(。)-算子在遗传类弱结构空间(简写为$${\mathcal {H}}wss$$ H w ss) $$(X, w, {\mathcal {H}})$$ (X, w, H)中,并考察了它的一些特征。此外,我们还澄清了一些在拓扑空间中可信但在广义拓扑空间中无法实现的关系。作为对w -开集和w -半开集的推广,通过$$\psi _{{\mathcal {H}}}(.)$$ ψ H(。)引入了-算子$$\psi _{{\mathcal {H}}}$$ -半开集。证明了$$\psi _{{\mathcal {H}}}$$ ψ H -半开集族构成了X上的一个超拓扑。针对遗传类$${\mathcal {H}}_{0}$$ H 0,建立了$$w T_{1}$$ w t1公理,并研究了它们的一些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信