A Fano compactification of the $$\textrm{SL}_2(\mathbb {C})$$ free group character variety

Pub Date : 2023-11-23 DOI:10.1007/s10711-023-00867-y
Joseph Cummings, Christopher Manon
{"title":"A Fano compactification of the $$\\textrm{SL}_2(\\mathbb {C})$$ free group character variety","authors":"Joseph Cummings, Christopher Manon","doi":"10.1007/s10711-023-00867-y","DOIUrl":null,"url":null,"abstract":"<p>We show that a certain compactification <span>\\(\\mathfrak {X}_g\\)</span> of the <span>\\(\\textrm{SL}_2(\\mathbb {C})\\)</span> free group character variety <span>\\(\\mathcal {X}(F_g, \\textrm{SL}_2(\\mathbb {C}))\\)</span> is Fano. This compactification has been studied previously by the second author, and separately by Biswas, Lawton, and Ramras. Part of the proof of this result involves the construction of a large family of integral reflexive polytopes.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00867-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that a certain compactification \(\mathfrak {X}_g\) of the \(\textrm{SL}_2(\mathbb {C})\) free group character variety \(\mathcal {X}(F_g, \textrm{SL}_2(\mathbb {C}))\) is Fano. This compactification has been studied previously by the second author, and separately by Biswas, Lawton, and Ramras. Part of the proof of this result involves the construction of a large family of integral reflexive polytopes.

Abstract Image

分享
查看原文
$$\textrm{SL}_2(\mathbb {C})$$自由群字符变化的Fano紧化
我们证明了\(\textrm{SL}_2(\mathbb {C})\)自由群特征变化\(\mathcal {X}(F_g, \textrm{SL}_2(\mathbb {C}))\)的一定紧化\(\mathfrak {X}_g\)是Fano。这种紧化已经由第二作者和Biswas、Lawton和Ramras分别研究过。这个结果的部分证明涉及到一个大族的整自反多面体的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信