Visualization of shallow subseafloor fluid migration in a shallow gas hydrate field using high-resolution acoustic mapping and ground-truthing and their implications on the formation process: a case study of the Sakata Knoll on the eastern margin of the Sea of Japan

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Miho Asada, Mikio Satoh, Manabu Tanahashi, Toshiyuki Yokota, Shusaku Goto
{"title":"Visualization of shallow subseafloor fluid migration in a shallow gas hydrate field using high-resolution acoustic mapping and ground-truthing and their implications on the formation process: a case study of the Sakata Knoll on the eastern margin of the Sea of Japan","authors":"Miho Asada, Mikio Satoh, Manabu Tanahashi, Toshiyuki Yokota, Shusaku Goto","doi":"10.1007/s11001-022-09495-9","DOIUrl":null,"url":null,"abstract":"<p>Acoustic mapping enables an understanding of the surface distribution of shallow gas hydrate (GH) and related products. Acoustically characteristic materials such as fluid-seepage-related methane-derived authigenic carbonate and/or shallow GHs, may be widely distributed beneath the shallow seafloor of the Sakata Knoll. High-amplitude reflectors over the knoll are the top of gas-bearing permeable layers and connect to the reverse fault at the foot of the knoll. Shallow GH and bacterial mats were observed at the high-amplitude layer cut by depression and/or the locally disturbed seafloor. Acoustic blanking zones observed on the sub-bottom profiler sections are current gas migration routes from the depth to the seafloor. Optical observations indicate that fluid seepage is not active in the current seafloor, and it is not necessarily observed above the acoustic blanking zones or shallow faults reaching the seafloor. In the Sakata Knoll, the tectonically formed reverse fault and gas-bearing permeable layers play more important roles in fluid migration from depth to the summit area of the knoll compared to acoustic blanking and shallow faults. The depression at the summit area of the Sakata Knoll was formed by the dissociation of a shallow GH at around the last glacial maximum. Limited fluid seepage is currently witnessed within and around the depression and it is less extensive than that in the past. Such knolls, with tectonically formed large faults and an anticline are abundant in the area and they can be good reservoirs for shallow GH along the eastern margin of the Sea of Japan.</p>","PeriodicalId":49882,"journal":{"name":"Marine Geophysical Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geophysical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11001-022-09495-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic mapping enables an understanding of the surface distribution of shallow gas hydrate (GH) and related products. Acoustically characteristic materials such as fluid-seepage-related methane-derived authigenic carbonate and/or shallow GHs, may be widely distributed beneath the shallow seafloor of the Sakata Knoll. High-amplitude reflectors over the knoll are the top of gas-bearing permeable layers and connect to the reverse fault at the foot of the knoll. Shallow GH and bacterial mats were observed at the high-amplitude layer cut by depression and/or the locally disturbed seafloor. Acoustic blanking zones observed on the sub-bottom profiler sections are current gas migration routes from the depth to the seafloor. Optical observations indicate that fluid seepage is not active in the current seafloor, and it is not necessarily observed above the acoustic blanking zones or shallow faults reaching the seafloor. In the Sakata Knoll, the tectonically formed reverse fault and gas-bearing permeable layers play more important roles in fluid migration from depth to the summit area of the knoll compared to acoustic blanking and shallow faults. The depression at the summit area of the Sakata Knoll was formed by the dissociation of a shallow GH at around the last glacial maximum. Limited fluid seepage is currently witnessed within and around the depression and it is less extensive than that in the past. Such knolls, with tectonically formed large faults and an anticline are abundant in the area and they can be good reservoirs for shallow GH along the eastern margin of the Sea of Japan.

Abstract Image

利用高分辨率声学测绘和地面测深技术可视化浅层天然气水合物浅层海底流体运移及其对形成过程的影响——以日本海东缘Sakata丘为例
声波测图有助于了解浅层天然气水合物(GH)及其相关产物的地表分布。Sakata丘浅层海底下可能广泛分布着与流体渗漏有关的甲烷衍生自生碳酸盐和/或浅层温室气体等声学特征物质。小丘上的高振幅反射体为含气透气层顶部,与小丘脚下的逆断层相连。在凹陷和/或局部扰动的海底切割的高振幅层观察到浅GH和细菌垫。在海底剖面剖面上观察到的声波空白区是从深处到海底的当前天然气运移路线。光学观测表明,流体渗流在当前的海底并不活跃,在声空白带或到达海底的浅层断层上方也不一定观察到流体渗流。在Sakata小丘中,构造形成的逆断层和含气透气层对流体从深部向小丘顶部的运移起着比声波封堵和浅层断层更重要的作用。坂田山峰顶凹陷是末次盛冰期前后浅GH的解离作用形成的。目前,凹陷内部及周边流体渗流程度有限,范围较以往有所缩小。区内具有构造大断裂和背斜的小丘丰富,是日本海东缘浅层天然气的良好储层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Geophysical Research
Marine Geophysical Research 地学-地球化学与地球物理
CiteScore
2.80
自引率
14.30%
发文量
41
审稿时长
>12 weeks
期刊介绍: Well-established international journal presenting marine geophysical experiments on the geology of continental margins, deep ocean basins and the global mid-ocean ridge system. The journal publishes the state-of-the-art in marine geophysical research including innovative geophysical data analysis, new deep sea floor imaging techniques and tools for measuring rock and sediment properties. Marine Geophysical Research reaches a large and growing community of readers worldwide. Rooted on early international interests in researching the global mid-ocean ridge system, its focus has expanded to include studies of continental margin tectonics, sediment deposition processes and resulting geohazards as well as their structure and stratigraphic record. The editors of MGR predict a rising rate of advances and development in this sphere in coming years, reflecting the diversity and complexity of marine geological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信