Calculus of archimedean Rankin–Selberg integrals with recurrence relations

IF 0.7 3区 数学 Q2 MATHEMATICS
Taku Ishii, Tadashi Miyazaki
{"title":"Calculus of archimedean Rankin–Selberg integrals with recurrence relations","authors":"Taku Ishii, Tadashi Miyazaki","doi":"10.1090/ert/618","DOIUrl":null,"url":null,"abstract":"Abstract:Let $n$ and $n’$ be positive integers such that $n-n’\\in \\{0,1\\}$. Let $F$ be either $\\mathbb {R}$ or $\\mathbb {C}$. Let $K_n$ and $K_{n’}$ be maximal compact subgroups of $\\mathrm {GL}(n,F)$ and $\\mathrm {GL}(n’,F)$, respectively. We give the explicit descriptions of archimedean Rankin–Selberg integrals at the minimal $K_n$- and $K_{n’}$-types for pairs of principal series representations of $\\mathrm {GL}(n,F)$ and $\\mathrm {GL}(n’,F)$, using their recurrence relations. Our results for $F=\\mathbb {C}$ can be applied to the arithmetic study of critical values of automorphic $L$-functions. <hr align=\"left\" noshade=\"noshade\" width=\"200\"/>","PeriodicalId":51304,"journal":{"name":"Representation Theory","volume":"365 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/ert/618","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract:Let $n$ and $n’$ be positive integers such that $n-n’\in \{0,1\}$. Let $F$ be either $\mathbb {R}$ or $\mathbb {C}$. Let $K_n$ and $K_{n’}$ be maximal compact subgroups of $\mathrm {GL}(n,F)$ and $\mathrm {GL}(n’,F)$, respectively. We give the explicit descriptions of archimedean Rankin–Selberg integrals at the minimal $K_n$- and $K_{n’}$-types for pairs of principal series representations of $\mathrm {GL}(n,F)$ and $\mathrm {GL}(n’,F)$, using their recurrence relations. Our results for $F=\mathbb {C}$ can be applied to the arithmetic study of critical values of automorphic $L$-functions.
具有递归关系的阿基米德Rankin-Selberg积分的演算
摘要:设$n$和$n ' $为正整数,使得$n-n ' \in \{0,1\}$。设$F$为$\mathbb {R}$或$\mathbb {C}$。设$K_n$和$K_{n '}$分别是$\ mathm {GL}(n,F)$和$\ mathm {GL}(n ',F)$的最大紧子群。利用递归关系,给出了$\ mathm {GL}(n,F)$和$\ mathm {GL}(n ',F)$的主级数表示对在最小$K_n$-和$K_{n '}$-类型上的阿基米德兰金-塞尔伯格积分的显式描述。我们关于$F=\mathbb {C}$的结果可以应用于自同构$L$-函数的临界值的算术研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Representation Theory
Representation Theory MATHEMATICS-
CiteScore
0.90
自引率
0.00%
发文量
70
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. Representation Theory is an open access journal freely available to all readers and with no publishing fees for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信