Parabolic induction and the Harish-Chandra 𝒟-module

IF 0.7 3区 数学 Q2 MATHEMATICS
Victor Ginzburg
{"title":"Parabolic induction and the Harish-Chandra 𝒟-module","authors":"Victor Ginzburg","doi":"10.1090/ert/603","DOIUrl":null,"url":null,"abstract":"Abstract:Let $G$ be a reductive group and $L$ a Levi subgroup. Parabolic induction and restriction are a pair of adjoint functors between $\\operatorname {Ad}$-equivariant derived categories of either constructible sheaves or (not necessarily holonomic) ${\\mathscr {D}}$-modules on $G$ and $L$, respectively. Bezrukavnikov and Yom Din proved, generalizing a classic result of Lusztig, that these functors are exact. In this paper, we consider a special case where $L=T$ is a maximal torus. We give explicit formulas for parabolic induction and restriction in terms of the Harish-Chandra ${\\mathscr {D}}$-module on ${G\\times T}$. We show that this module is flat over ${\\mathscr {D}}(T)$, which easily implies that parabolic induction and restriction are exact functors between the corresponding abelian categories of ${\\mathscr {D}}$-modules. <hr align=\"left\" noshade=\"noshade\" width=\"200\"/>","PeriodicalId":51304,"journal":{"name":"Representation Theory","volume":"373 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/ert/603","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract:Let $G$ be a reductive group and $L$ a Levi subgroup. Parabolic induction and restriction are a pair of adjoint functors between $\operatorname {Ad}$-equivariant derived categories of either constructible sheaves or (not necessarily holonomic) ${\mathscr {D}}$-modules on $G$ and $L$, respectively. Bezrukavnikov and Yom Din proved, generalizing a classic result of Lusztig, that these functors are exact. In this paper, we consider a special case where $L=T$ is a maximal torus. We give explicit formulas for parabolic induction and restriction in terms of the Harish-Chandra ${\mathscr {D}}$-module on ${G\times T}$. We show that this module is flat over ${\mathscr {D}}(T)$, which easily implies that parabolic induction and restriction are exact functors between the corresponding abelian categories of ${\mathscr {D}}$-modules.
抛物线感应和哈里什-钱德拉𝒟-module
摘要:设$G$是约化群,$L$是Levi子群。抛物的归纳和约束是分别在$G$和$L$上的${\mathscr {D}}$-模的$\operatorname {Ad}$-等变派生范畴或$G$和$L$上的${\mathscr {D}}$-模之间的一对伴随函子。Bezrukavnikov和Yom Din推广了Lusztig的经典结果,证明了这些函子是精确的。本文考虑了一类特殊情况,其中$L=T$是一个极大环面。我们给出了关于${G\乘以T}$上的Harish-Chandra ${\mathscr {D}}$-模的抛物型归纳和约束的显式公式。我们证明了该模在${\mathscr {D}}(T)$上是平坦的,这很容易表明抛物线归纳和约束是${\mathscr {D}}$-模的相应阿贝尔范畴之间的精确函子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Representation Theory
Representation Theory MATHEMATICS-
CiteScore
0.90
自引率
0.00%
发文量
70
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. Representation Theory is an open access journal freely available to all readers and with no publishing fees for authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信