A Relativistic Abelian Chern–Simons Model on Graph

IF 0.7 4区 数学 Q2 MATHEMATICS
Juan Zhao
{"title":"A Relativistic Abelian Chern–Simons Model on Graph","authors":"Juan Zhao","doi":"10.1007/s41980-023-00830-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a relativistic Abelian Chern–Simons equation </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} \\Delta u=\\lambda \\left( a(b-a)e^{u}-b(b-a)e^{v}+a^{2}e^{2u}-abe^{2v}+b(b-a)e^{u+v}\\right) +4\\pi \\sum \\limits _{j=1}^{N_{1}} \\delta _{p_{j}},\\\\ \\Delta v=\\lambda \\left( -b(b-a)e^{u}+a(b-a)e^{v}-abe^{2u} +a^{2}e^{2v}+b(b-a)e^{u+v}\\right) +4\\pi \\sum \\limits _{j=1}^{N_{2}} \\delta _{q_{j}}, \\end{array} \\right. \\end{aligned}$$</span><p>on a connected finite graph <span>\\(G=(V, E)\\)</span>, where <span>\\(\\lambda &gt;0\\)</span> is a constant; <span>\\(a&gt;b&gt;0\\)</span>; <span>\\(N_{1}\\)</span> and <span>\\(N_{2}\\)</span> are positive integers; <span>\\(p_{1}, p_{2}, \\ldots , p_{N_{1}}\\)</span> and <span>\\(q_{1}, q_{2}, \\ldots , q_{N_{2}}\\)</span> denote distinct vertices of <i>V</i>. Additionally, <span>\\(\\delta _{p_{j}}\\)</span> and <span>\\(\\delta _{q_{j}}\\)</span> represent the Dirac delta masses located at vertices <span>\\(p_{j}\\)</span> and <span>\\(q_{j}\\)</span>. By employing the method of constrained minimization, we prove that there exists a critical value <span>\\(\\lambda _{0}\\)</span>, such that the above equation admits a solution when <span>\\(\\lambda \\ge \\lambda _{0}\\)</span>. Furthermore, we employ the mountain pass theorem developed by Ambrosetti–Rabinowitz to establish that the equation has at least two solutions when <span>\\(\\lambda &gt;\\lambda _{0}\\)</span>.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-023-00830-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a relativistic Abelian Chern–Simons equation

$$\begin{aligned} \left\{ \begin{array}{l} \Delta u=\lambda \left( a(b-a)e^{u}-b(b-a)e^{v}+a^{2}e^{2u}-abe^{2v}+b(b-a)e^{u+v}\right) +4\pi \sum \limits _{j=1}^{N_{1}} \delta _{p_{j}},\\ \Delta v=\lambda \left( -b(b-a)e^{u}+a(b-a)e^{v}-abe^{2u} +a^{2}e^{2v}+b(b-a)e^{u+v}\right) +4\pi \sum \limits _{j=1}^{N_{2}} \delta _{q_{j}}, \end{array} \right. \end{aligned}$$

on a connected finite graph \(G=(V, E)\), where \(\lambda >0\) is a constant; \(a>b>0\); \(N_{1}\) and \(N_{2}\) are positive integers; \(p_{1}, p_{2}, \ldots , p_{N_{1}}\) and \(q_{1}, q_{2}, \ldots , q_{N_{2}}\) denote distinct vertices of V. Additionally, \(\delta _{p_{j}}\) and \(\delta _{q_{j}}\) represent the Dirac delta masses located at vertices \(p_{j}\) and \(q_{j}\). By employing the method of constrained minimization, we prove that there exists a critical value \(\lambda _{0}\), such that the above equation admits a solution when \(\lambda \ge \lambda _{0}\). Furthermore, we employ the mountain pass theorem developed by Ambrosetti–Rabinowitz to establish that the equation has at least two solutions when \(\lambda >\lambda _{0}\).

图上的相对论Abelian chen - simons模型
本文考虑连通有限图\(G=(V, E)\)上的相对论性Abelian chen - simons方程$$\begin{aligned} \left\{ \begin{array}{l} \Delta u=\lambda \left( a(b-a)e^{u}-b(b-a)e^{v}+a^{2}e^{2u}-abe^{2v}+b(b-a)e^{u+v}\right) +4\pi \sum \limits _{j=1}^{N_{1}} \delta _{p_{j}},\\ \Delta v=\lambda \left( -b(b-a)e^{u}+a(b-a)e^{v}-abe^{2u} +a^{2}e^{2v}+b(b-a)e^{u+v}\right) +4\pi \sum \limits _{j=1}^{N_{2}} \delta _{q_{j}}, \end{array} \right. \end{aligned}$$,其中\(\lambda >0\)为常数;\(a>b>0\);\(N_{1}\)和\(N_{2}\)是正整数;\(p_{1}, p_{2}, \ldots , p_{N_{1}}\)和\(q_{1}, q_{2}, \ldots , q_{N_{2}}\)表示v的不同顶点。另外,\(\delta _{p_{j}}\)和\(\delta _{q_{j}}\)表示位于顶点\(p_{j}\)和\(q_{j}\)的狄拉克三角洲质量。利用约束极小化的方法,证明了存在一个临界值\(\lambda _{0}\),使得上式在\(\lambda \ge \lambda _{0}\)时有解。进一步,我们利用Ambrosetti-Rabinowitz的山口定理,证明当\(\lambda >\lambda _{0}\)时,方程至少有两个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信