The Development, Optimization, and Validation of Four Different Machine Learning Algorithms to Identify Ventilator Dyssynchrony

Peter D Sottile, Bradford Smith, Marc Moss, David J Albers
{"title":"The Development, Optimization, and Validation of Four Different Machine Learning Algorithms to Identify Ventilator Dyssynchrony","authors":"Peter D Sottile, Bradford Smith, Marc Moss, David J Albers","doi":"10.1101/2023.11.28.23299134","DOIUrl":null,"url":null,"abstract":"<strong>Objective</strong> Invasive mechanical ventilation can worsen lung injury. Ventilator dyssynchrony (VD) may propagate ventilator-induced lung injury (VILI) and is challenging to detect and systematically monitor because each patient takes approximately 25,000 breaths a day yet some types of VD are rare, accounting for less than 1% of all breaths. Therefore, we sought to develop and validate accurate machine learning (ML) algorithms to detect multiple types of VD by leveraging esophageal pressure waveform data to quantify patient effort with airway pressure, flow, and volume data generated during mechanical ventilation, building a computational pipeline to facilitate the study of VD.","PeriodicalId":501074,"journal":{"name":"medRxiv - Respiratory Medicine","volume":"83 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Respiratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.28.23299134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective Invasive mechanical ventilation can worsen lung injury. Ventilator dyssynchrony (VD) may propagate ventilator-induced lung injury (VILI) and is challenging to detect and systematically monitor because each patient takes approximately 25,000 breaths a day yet some types of VD are rare, accounting for less than 1% of all breaths. Therefore, we sought to develop and validate accurate machine learning (ML) algorithms to detect multiple types of VD by leveraging esophageal pressure waveform data to quantify patient effort with airway pressure, flow, and volume data generated during mechanical ventilation, building a computational pipeline to facilitate the study of VD.
开发、优化和验证四种不同的机器学习算法来识别呼吸机不同步
目的有创机械通气可加重肺损伤。呼吸机不同步(VD)可能会传播呼吸机诱导的肺损伤(VILI),由于每位患者每天约进行25,000次呼吸,但某些类型的VD很罕见,占所有呼吸的不到1%,因此检测和系统监测具有挑战性。因此,我们试图开发和验证准确的机器学习(ML)算法,通过利用食管压力波形数据来量化患者在机械通气过程中产生的气道压力、流量和容积数据,从而检测多种类型的VD,建立一个计算管道,以促进VD的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信