{"title":"On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolic-valued norm","authors":"Erdem Toksoy, Birsen Sağır","doi":"10.1515/gmj-2023-2093","DOIUrl":null,"url":null,"abstract":"In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-convexity, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-strict convexity, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo></m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform convexity. Moreover, the basic inequalities such as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Hölder’s inequality and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic (𝔻{\mathbb{D}}-valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including 𝔹ℂ{\mathbb{B}\mathbb{C}}-convexity, 𝔹ℂ{\mathbb{B}\mathbb{C}}-strict convexity, and 𝔹ℂ{\mathbb{B}\mathbb{C}}-uniform convexity. Moreover, the basic inequalities such as 𝔻{\mathbb{D}}-Hölder’s inequality and 𝔻{\mathbb{D}}-Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.