On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolic-valued norm

IF 0.8 4区 数学 Q2 MATHEMATICS
Erdem Toksoy, Birsen Sağır
{"title":"On geometrical characteristics and inequalities of new bicomplex Lebesgue Spaces with hyperbolic-valued norm","authors":"Erdem Toksoy, Birsen Sağır","doi":"10.1515/gmj-2023-2093","DOIUrl":null,"url":null,"abstract":"In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo>⁢</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-convexity, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo>⁢</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-strict convexity, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔹</m:mi> <m:mo>⁢</m:mo> <m:mi>ℂ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0260.png\" /> <jats:tex-math>{\\mathbb{B}\\mathbb{C}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform convexity. Moreover, the basic inequalities such as <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Hölder’s inequality and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔻</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2093_eq_0265.png\" /> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, it is assumed that the norm over bicomplex numbers is the hyperbolic ( 𝔻 {\mathbb{D}} -valued) norm. In this paper, we provide an overview of bicomplex Lebesgue spaces and investigate some of their geometric properties, including 𝔹 {\mathbb{B}\mathbb{C}} -convexity, 𝔹 {\mathbb{B}\mathbb{C}} -strict convexity, and 𝔹 {\mathbb{B}\mathbb{C}} -uniform convexity. Moreover, the basic inequalities such as 𝔻 {\mathbb{D}} -Hölder’s inequality and 𝔻 {\mathbb{D}} -Minkowski inequality for bicomplex Lebesgue spaces are presented, used to show geometric properties.
双曲值范数双复Lebesgue空间的几何特征与不等式
在这项工作中,假定双复数上的范数是双曲( {\mathbb{D}}值)范数。本文概述了双复Lebesgue空间,并研究了它们的一些几何性质,包括:σ∞∞∞∞∈\mathbb{B}\mathbb{C}} -凸性、σ∞∞∞∞∞∞∞∞∞∞∞、σ∞∞∞∞∞∞∞。此外,给出了双复Lebesgue空间的 {\mathbb{D}} -Hölder不等式和 {\mathbb{D}} -Minkowski不等式等基本不等式,用于表示其几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信