Reproducing kernel Banach space defined by the minimal norm property and applications to partial differential equation theory

Pub Date : 2023-11-19 DOI:10.1515/gmj-2023-2095
Tomasz Łukasz Żynda
{"title":"Reproducing kernel Banach space defined by the minimal norm property and applications to partial differential equation theory","authors":"Tomasz Łukasz Żynda","doi":"10.1515/gmj-2023-2095","DOIUrl":null,"url":null,"abstract":"It it well known that a Hilbert space <jats:italic>V</jats:italic> of functions defined on <jats:italic>U</jats:italic> is a reproducing kernel Hilbert space if and only if for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi>U</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2095_eq_0240.png\" /> <jats:tex-math>{z\\in U}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, in the set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>V</m:mi> <m:mi>z</m:mi> </m:msub> <m:mo>:=</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mi>V</m:mi> </m:mrow> <m:mo>∣</m:mo> <m:mrow> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2095_eq_0132.png\" /> <jats:tex-math>{V_{z}:=\\{f\\in V\\mid f(z)=1\\}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, if non-empty, there is exactly one element with minimal norm and there is a direct connection between the reproducing kernel and such an element. In this paper, we define reproducing kernel Banach space as a space which satisfies this property and the reproducing kernel of it using this relation. We show that this reproducing kernel share a lot of basic properties with the classical one. The notable exception is that in Banach spaces the equality <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mover accent=\"true\"> <m:mrow> <m:mi>K</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>¯</m:mo> </m:mover> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2095_eq_0105.png\" /> <jats:tex-math>{K(z,w)=\\overline{K(w,z)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> does not have to be true without assumptions that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>z</m:mi> <m:mo>,</m:mo> <m:mi>w</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>w</m:mi> <m:mo>,</m:mo> <m:mi>z</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2095_eq_0106.png\" /> <jats:tex-math>{K(z,w)\\neq 0,K(w,z)\\neq 0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We give sufficient and necessary conditions for a Banach space of functions to be a reproducing kernel Banach space. At the end, we give some examples including ones which show how reproducing kernel Banach spaces can be used to solve extremal problems of Partial Differential Equations Theory.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It it well known that a Hilbert space V of functions defined on U is a reproducing kernel Hilbert space if and only if for any z U {z\in U} , in the set V z := { f V f ( z ) = 1 } {V_{z}:=\{f\in V\mid f(z)=1\}} , if non-empty, there is exactly one element with minimal norm and there is a direct connection between the reproducing kernel and such an element. In this paper, we define reproducing kernel Banach space as a space which satisfies this property and the reproducing kernel of it using this relation. We show that this reproducing kernel share a lot of basic properties with the classical one. The notable exception is that in Banach spaces the equality K ( z , w ) = K ( w , z ) ¯ {K(z,w)=\overline{K(w,z)}} does not have to be true without assumptions that K ( z , w ) 0 , K ( w , z ) 0 {K(z,w)\neq 0,K(w,z)\neq 0} . We give sufficient and necessary conditions for a Banach space of functions to be a reproducing kernel Banach space. At the end, we give some examples including ones which show how reproducing kernel Banach spaces can be used to solve extremal problems of Partial Differential Equations Theory.
分享
查看原文
由极小范数性质定义的核Banach空间的再现及其在偏微分方程理论中的应用
已知在U上定义的函数的希尔伯特空间V是一个可复制的核希尔伯特空间,当且仅当对于任意z∈{z z\in U,}在集合V z:={ f∈V∣f≠(z)=1 }V_z{:={f {}\in V \mid f(z)=1}中,}如果非空,则存在一个具有最小范数的元素,并且在可复制的核与这样一个元素之间存在直接联系。本文将再现核巴拿赫空间定义为满足这一性质的空间,并利用这一关系定义其再现核。我们证明了这种再现核与经典核有许多共同的基本性质。值得注意的例外是,在巴拿赫空间中,K¹(z,w)= K¹(w,z)¯{K(z,w)= \overline{K(w,z)}}不需要假设K¹(z,w)≠0,K¹(w,z)≠0 {K(z,w)\neq 0,K(w,z) \neq 0}。给出了函数的巴拿赫空间是可复制核巴拿赫空间的充要条件。最后,我们给出了一些例子,包括如何利用再现核巴拿赫空间来解决偏微分方程理论中的极值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信