Bilinear multipliers on weighted Orlicz spaces
IF 0.8
4区 数学
Q2 MATHEMATICS
Rüya Üster
求助PDF
{"title":"Bilinear multipliers on weighted Orlicz spaces","authors":"Rüya Üster","doi":"10.1515/gmj-2023-2099","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0238.png\" /> <jats:tex-math>{\\Phi_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be Young functions and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ω</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0296.png\" /> <jats:tex-math>{\\omega_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be weights on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0267.png\" /> <jats:tex-math>{\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0356.png\" /> <jats:tex-math>{i=1,2,3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A locally integrable function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo>,</m:mo> <m:mi>η</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0359.png\" /> <jats:tex-math>{m(\\xi,\\eta)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo>×</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0266.png\" /> <jats:tex-math>{\\mathbb{R}^{d}\\times\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be a bilinear multiplier on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0267.png\" /> <jats:tex-math>{\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of type <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>ω</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>;</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>ω</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>;</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>ω</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0152.png\" /> <jats:tex-math>{(\\Phi_{1},\\omega_{1};\\Phi_{2},\\omega_{2};\\Phi_{3},\\omega_{3})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>f</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>f</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:msub> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:msub> <m:mrow> <m:mover accent=\"true\"> <m:msub> <m:mi>f</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo stretchy=\"false\">^</m:mo> </m:mover> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mover accent=\"true\"> <m:msub> <m:mi>f</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo stretchy=\"false\">^</m:mo> </m:mover> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>η</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mi>m</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo>,</m:mo> <m:mi>η</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo></m:mo> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mi>π</m:mi> <m:mo></m:mo> <m:mi>i</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mrow> <m:mi>ξ</m:mi> <m:mo>+</m:mo> <m:mi>η</m:mi> </m:mrow> <m:mo>,</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mpadded> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mpadded width=\"+1.7pt\"> <m:mi>ξ</m:mi> </m:mpadded> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>η</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0042.png\" /> <jats:tex-math>B_{m}(f_{1},f_{2})(x)=\\int_{\\mathbb{R}^{d}}\\int_{\\mathbb{R}^{d}}\\hat{f_{1}}(% \\xi)\\hat{f_{2}}(\\eta)m(\\xi,\\eta)e^{2\\pi i\\langle\\xi+\\eta,x\\rangle}\\,d\\xi\\,d\\eta</jats:tex-math> </jats:alternatives> </jats:disp-formula> defines a bounded bilinear operator from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:msub> <m:mi>ω</m:mi> <m:mn>1</m:mn> </m:msub> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>1</m:mn> </m:msub> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>×</m:mo> <m:msubsup> <m:mi>L</m:mi> <m:msub> <m:mi>ω</m:mi> <m:mn>2</m:mn> </m:msub> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>2</m:mn> </m:msub> </m:msubsup> </m:mrow> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0183.png\" /> <jats:tex-math>{L^{\\Phi_{1}}_{\\omega_{1}}(\\mathbb{R}^{d})\\times L^{\\Phi_{2}}_{\\omega_{2}}(% \\mathbb{R}^{d})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:msub> <m:mi>ω</m:mi> <m:mn>3</m:mn> </m:msub> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>3</m:mn> </m:msub> </m:msubsup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0185.png\" /> <jats:tex-math>{L^{\\Phi_{3}}_{\\omega_{3}}(\\mathbb{R}^{d})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We deduce some properties of this class of operators. Moreover, we give the methods to generate bilinear multipliers between weighted Orlicz spaces.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Let Φ i {\Phi_{i}} be Young functions and ω i {\omega_{i}} be weights on ℝ d {\mathbb{R}^{d}} , i = 1 , 2 , 3 {i=1,2,3} . A locally integrable function m ( ξ , η ) {m(\xi,\eta)} on ℝ d × ℝ d {\mathbb{R}^{d}\times\mathbb{R}^{d}} is said to be a bilinear multiplier on ℝ d {\mathbb{R}^{d}} of type ( Φ 1 , ω 1 ; Φ 2 , ω 2 ; Φ 3 , ω 3 ) {(\Phi_{1},\omega_{1};\Phi_{2},\omega_{2};\Phi_{3},\omega_{3})} if B m ( f 1 , f 2 ) ( x ) = ∫ ℝ d ∫ ℝ d f 1 ^ ( ξ ) f 2 ^ ( η ) m ( ξ , η ) e 2 π i 〈 ξ + η , x 〉 𝑑 ξ 𝑑 η B_{m}(f_{1},f_{2})(x)=\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\hat{f_{1}}(% \xi)\hat{f_{2}}(\eta)m(\xi,\eta)e^{2\pi i\langle\xi+\eta,x\rangle}\,d\xi\,d\eta defines a bounded bilinear operator from L ω 1 Φ 1 ( ℝ d ) × L ω 2 Φ 2 ( ℝ d ) {L^{\Phi_{1}}_{\omega_{1}}(\mathbb{R}^{d})\times L^{\Phi_{2}}_{\omega_{2}}(% \mathbb{R}^{d})} to L ω 3 Φ 3 ( ℝ d ) {L^{\Phi_{3}}_{\omega_{3}}(\mathbb{R}^{d})} . We deduce some properties of this class of operators. Moreover, we give the methods to generate bilinear multipliers between weighted Orlicz spaces.
加权Orlicz空间上的双线性乘子
让Φ {\Phi_{I}} 是杨氏函数和ω i {\omega_{I}} 是在函数d上的权值 {\mathbb{R}^{d}} , I = 1,2,3 {i=1,2,3} . 一个局部可积函数m²(ξ, η) {m(\xi,\eta)} 在d × d上 {\mathbb{R}^{d}\times\mathbb{R}^{d}} 是一个在d上的双线性乘子 {\mathbb{R}^{d}} 类型(Φ 1, ω 1;Φ 2, ω 2;Φ 3, ω 3) {(\Phi_{1},\omega_{1};\Phi_{2},\omega_{2};\Phi_{3},\omega_{3})} 若B m∈(f1, f2)∈(x) =∫∈d∫∈d f 1 ^ (ξ)∑f 2 ^ (η)∑m ^ (ξ, η)∑e 2 ^ π∑i < ξ + η, x >∑𝑑ξ²𝑑η B_{m}(f_{1},f_{2})(x)=\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\hat{f_{1}}(% \xi)\hat{f_{2}}(\eta)m(\xi,\eta)e^{2\pi i\langle\xi+\eta,x\rangle}\,d\xi\,d\eta defines a bounded bilinear operator from L ω 1 Φ 1 ( ℝ d ) × L ω 2 Φ 2 ( ℝ d ) {L^{\Phi_{1}}_{\omega_{1}}(\mathbb{R}^{d})\times L^{\Phi_{2}}_{\omega_{2}}(% \mathbb{R}^{d})} to L ω 3 Φ 3 ( ℝ d ) {L^{\Phi_{3}}_{\omega_{3}}(\mathbb{R}^{d})} . We deduce some properties of this class of operators. Moreover, we give the methods to generate bilinear multipliers between weighted Orlicz spaces.
本文章由计算机程序翻译,如有差异,请以英文原文为准。