Bilinear multipliers on weighted Orlicz spaces

IF 0.8 4区 数学 Q2 MATHEMATICS
Rüya Üster
{"title":"Bilinear multipliers on weighted Orlicz spaces","authors":"Rüya Üster","doi":"10.1515/gmj-2023-2099","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0238.png\" /> <jats:tex-math>{\\Phi_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be Young functions and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>ω</m:mi> <m:mi>i</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0296.png\" /> <jats:tex-math>{\\omega_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be weights on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0267.png\" /> <jats:tex-math>{\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>3</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0356.png\" /> <jats:tex-math>{i=1,2,3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A locally integrable function <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo>,</m:mo> <m:mi>η</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0359.png\" /> <jats:tex-math>{m(\\xi,\\eta)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo>×</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0266.png\" /> <jats:tex-math>{\\mathbb{R}^{d}\\times\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be a bilinear multiplier on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0267.png\" /> <jats:tex-math>{\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of type <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>ω</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>;</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>ω</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>;</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>ω</m:mi> <m:mn>3</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0152.png\" /> <jats:tex-math>{(\\Phi_{1},\\omega_{1};\\Phi_{2},\\omega_{2};\\Phi_{3},\\omega_{3})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> if <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>B</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>f</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mi>f</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:msub> <m:mrow> <m:msub> <m:mo largeop=\"true\" symmetric=\"true\">∫</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:msub> <m:mrow> <m:mover accent=\"true\"> <m:msub> <m:mi>f</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo stretchy=\"false\">^</m:mo> </m:mover> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mover accent=\"true\"> <m:msub> <m:mi>f</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo stretchy=\"false\">^</m:mo> </m:mover> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>η</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mi>m</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo>,</m:mo> <m:mi>η</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mpadded width=\"+1.7pt\"> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>π</m:mi> <m:mo>⁢</m:mo> <m:mi>i</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mrow> <m:mi>ξ</m:mi> <m:mo>+</m:mo> <m:mi>η</m:mi> </m:mrow> <m:mo>,</m:mo> <m:mi>x</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:mrow> </m:msup> </m:mpadded> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mpadded width=\"+1.7pt\"> <m:mi>ξ</m:mi> </m:mpadded> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo>𝑑</m:mo> <m:mi>η</m:mi> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0042.png\" /> <jats:tex-math>B_{m}(f_{1},f_{2})(x)=\\int_{\\mathbb{R}^{d}}\\int_{\\mathbb{R}^{d}}\\hat{f_{1}}(% \\xi)\\hat{f_{2}}(\\eta)m(\\xi,\\eta)e^{2\\pi i\\langle\\xi+\\eta,x\\rangle}\\,d\\xi\\,d\\eta</jats:tex-math> </jats:alternatives> </jats:disp-formula> defines a bounded bilinear operator from <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:msub> <m:mi>ω</m:mi> <m:mn>1</m:mn> </m:msub> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>1</m:mn> </m:msub> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>×</m:mo> <m:msubsup> <m:mi>L</m:mi> <m:msub> <m:mi>ω</m:mi> <m:mn>2</m:mn> </m:msub> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>2</m:mn> </m:msub> </m:msubsup> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0183.png\" /> <jats:tex-math>{L^{\\Phi_{1}}_{\\omega_{1}}(\\mathbb{R}^{d})\\times L^{\\Phi_{2}}_{\\omega_{2}}(% \\mathbb{R}^{d})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:msub> <m:mi>ω</m:mi> <m:mn>3</m:mn> </m:msub> <m:msub> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mn>3</m:mn> </m:msub> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2099_eq_0185.png\" /> <jats:tex-math>{L^{\\Phi_{3}}_{\\omega_{3}}(\\mathbb{R}^{d})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We deduce some properties of this class of operators. Moreover, we give the methods to generate bilinear multipliers between weighted Orlicz spaces.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Φ i {\Phi_{i}} be Young functions and ω i {\omega_{i}} be weights on d {\mathbb{R}^{d}} , i = 1 , 2 , 3 {i=1,2,3} . A locally integrable function m ( ξ , η ) {m(\xi,\eta)} on d × d {\mathbb{R}^{d}\times\mathbb{R}^{d}} is said to be a bilinear multiplier on d {\mathbb{R}^{d}} of type ( Φ 1 , ω 1 ; Φ 2 , ω 2 ; Φ 3 , ω 3 ) {(\Phi_{1},\omega_{1};\Phi_{2},\omega_{2};\Phi_{3},\omega_{3})} if B m ( f 1 , f 2 ) ( x ) = d d f 1 ^ ( ξ ) f 2 ^ ( η ) m ( ξ , η ) e 2 π i ξ + η , x 𝑑 ξ 𝑑 η B_{m}(f_{1},f_{2})(x)=\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\hat{f_{1}}(% \xi)\hat{f_{2}}(\eta)m(\xi,\eta)e^{2\pi i\langle\xi+\eta,x\rangle}\,d\xi\,d\eta defines a bounded bilinear operator from L ω 1 Φ 1 ( d ) × L ω 2 Φ 2 ( d ) {L^{\Phi_{1}}_{\omega_{1}}(\mathbb{R}^{d})\times L^{\Phi_{2}}_{\omega_{2}}(% \mathbb{R}^{d})} to L ω 3 Φ 3 ( d ) {L^{\Phi_{3}}_{\omega_{3}}(\mathbb{R}^{d})} . We deduce some properties of this class of operators. Moreover, we give the methods to generate bilinear multipliers between weighted Orlicz spaces.
加权Orlicz空间上的双线性乘子
让Φ {\Phi_{I}} 是杨氏函数和ω i {\omega_{I}} 是在函数d上的权值 {\mathbb{R}^{d}} , I = 1,2,3 {i=1,2,3} . 一个局部可积函数m²(ξ, η) {m(\xi,\eta)} 在d × d上 {\mathbb{R}^{d}\times\mathbb{R}^{d}} 是一个在d上的双线性乘子 {\mathbb{R}^{d}} 类型(Φ 1, ω 1;Φ 2, ω 2;Φ 3, ω 3) {(\Phi_{1},\omega_{1};\Phi_{2},\omega_{2};\Phi_{3},\omega_{3})} 若B m∈(f1, f2)∈(x) =∫∈d∫∈d f 1 ^ (ξ)∑f 2 ^ (η)∑m ^ (ξ, η)∑e 2 ^ π∑i < ξ + η, x >∑𝑑ξ²𝑑η B_{m}(f_{1},f_{2})(x)=\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\hat{f_{1}}(% \xi)\hat{f_{2}}(\eta)m(\xi,\eta)e^{2\pi i\langle\xi+\eta,x\rangle}\,d\xi\,d\eta defines a bounded bilinear operator from L ω 1 Φ 1 ⁢ ( ℝ d ) × L ω 2 Φ 2 ⁢ ( ℝ d ) {L^{\Phi_{1}}_{\omega_{1}}(\mathbb{R}^{d})\times L^{\Phi_{2}}_{\omega_{2}}(% \mathbb{R}^{d})} to L ω 3 Φ 3 ⁢ ( ℝ d ) {L^{\Phi_{3}}_{\omega_{3}}(\mathbb{R}^{d})} . We deduce some properties of this class of operators. Moreover, we give the methods to generate bilinear multipliers between weighted Orlicz spaces.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信