Calculation of Reynolds equation for the generalized non-Newtonian fluids and its asymptotic behavior in a thin domain

Pub Date : 2023-11-19 DOI:10.1515/gmj-2023-2090
Mohamed Dilmi, Aissa Benseghir, Mourad Dilmi, Hamid Benseridi
{"title":"Calculation of Reynolds equation for the generalized non-Newtonian fluids and its asymptotic behavior in a thin domain","authors":"Mohamed Dilmi, Aissa Benseghir, Mourad Dilmi, Hamid Benseridi","doi":"10.1515/gmj-2023-2090","DOIUrl":null,"url":null,"abstract":"Three-dimensional boundary-value problem describing a generalized non-Newtonian fluid with nonlinear Tresca friction type in a thin domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mi>ε</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2090_eq_0267.png\" /> <jats:tex-math>{\\Omega^{\\varepsilon}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are considered. We study the asymptotic behavior when one dimension of the fluid domain tends to zero. We prove some weak convergence of the velocity and the pressure of the fluid. Then the limit problem in two-dimensional domain and the specific Reynolds equation are obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional boundary-value problem describing a generalized non-Newtonian fluid with nonlinear Tresca friction type in a thin domain Ω ε {\Omega^{\varepsilon}} are considered. We study the asymptotic behavior when one dimension of the fluid domain tends to zero. We prove some weak convergence of the velocity and the pressure of the fluid. Then the limit problem in two-dimensional domain and the specific Reynolds equation are obtained.
分享
查看原文
广义非牛顿流体的Reynolds方程的计算及其在薄域中的渐近行为
研究了在薄域Ω ε {\Omega ^ {\varepsilon}}上具有非线性Tresca摩擦型的广义非牛顿流体的三维边值问题。研究了流体域一维趋近于零时的渐近行为。我们证明了流体的速度和压力的一些弱收敛性。然后得到二维区域的极限问题和具体的Reynolds方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信