{"title":"Optimizing targeted gene flow to maximize local genetic diversity: when and how to act under various scenarios of environmental change","authors":"Adam S. Smart, Ben L. Phillips","doi":"10.1007/s10592-023-01541-2","DOIUrl":null,"url":null,"abstract":"<p>Targeted gene flow is an emerging conservation approach which involves introducing a cohort of individuals with particular traits to locations where they can produce a conservation benefit. This technique is being proposed to adapt recipient populations to a known threat, but questions remain surrounding how best to maximize conservation outcomes during periods of continuous directional environmental change. Here we introduce a new management objective—to keep the recipient population extant and with maximum diversity of local alleles—and we explore how varying the timing and size of an introduction can maximise this objective. Our results reveal a trade-off between keeping a population extant and maintaining a high level of genetic diversity, but management levers can often optimize this so that nearly 100% of the allelic diversity is preserved. These optimum outcomes sets are highly sensitive to the predicted rate of environmental shift, as well as the level of outbreeding depression in the system.</p>","PeriodicalId":55212,"journal":{"name":"Conservation Genetics","volume":"13 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Genetics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10592-023-01541-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted gene flow is an emerging conservation approach which involves introducing a cohort of individuals with particular traits to locations where they can produce a conservation benefit. This technique is being proposed to adapt recipient populations to a known threat, but questions remain surrounding how best to maximize conservation outcomes during periods of continuous directional environmental change. Here we introduce a new management objective—to keep the recipient population extant and with maximum diversity of local alleles—and we explore how varying the timing and size of an introduction can maximise this objective. Our results reveal a trade-off between keeping a population extant and maintaining a high level of genetic diversity, but management levers can often optimize this so that nearly 100% of the allelic diversity is preserved. These optimum outcomes sets are highly sensitive to the predicted rate of environmental shift, as well as the level of outbreeding depression in the system.
期刊介绍:
Conservation Genetics promotes the conservation of biodiversity by providing a forum for data and ideas, aiding the further development of this area of study. Contributions include work from the disciplines of population genetics, molecular ecology, molecular biology, evolutionary biology, systematics, forensics, and others. The focus is on genetic and evolutionary applications to problems of conservation, reflecting the diversity of concerns relevant to conservation biology. Studies are based on up-to-date technologies, including genomic methodologies. The journal publishes original research papers, short communications, review papers and perspectives.