Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds

Patrick Buchfink, Silke Glas, Bernard Haasdonk
{"title":"Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds","authors":"Patrick Buchfink, Silke Glas, Bernard Haasdonk","doi":"arxiv-2312.00724","DOIUrl":null,"url":null,"abstract":"For projection-based linear-subspace model order reduction (MOR), it is well\nknown that the Kolmogorov n-width describes the best-possible error for a\nreduced order model (ROM) of size n. In this paper, we provide approximation\nbounds for ROMs on polynomially mapped manifolds. In particular, we show that\nthe approximation bounds depend on the polynomial degree p of the mapping\nfunction as well as on the linear Kolmogorov n-width for the underlying\nproblem. This results in a Kolmogorov (n, p)-width, which describes a lower\nbound for the best-possible error for a ROM on polynomially mapped manifolds of\npolynomial degree p and reduced size n.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"39 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For projection-based linear-subspace model order reduction (MOR), it is well known that the Kolmogorov n-width describes the best-possible error for a reduced order model (ROM) of size n. In this paper, we provide approximation bounds for ROMs on polynomially mapped manifolds. In particular, we show that the approximation bounds depend on the polynomial degree p of the mapping function as well as on the linear Kolmogorov n-width for the underlying problem. This results in a Kolmogorov (n, p)-width, which describes a lower bound for the best-possible error for a ROM on polynomially mapped manifolds of polynomial degree p and reduced size n.
多项式映射流形模型约简的近似界
对于基于投影的线性子空间模型降阶(MOR),众所周知,Kolmogorov n-width描述了大小为n的降阶模型(ROM)的最佳可能误差。在本文中,我们提供了多项式映射流形上的降阶模型的近似界。特别地,我们证明了近似界依赖于映射函数的多项式度p以及底层问题的线性Kolmogorov n-width。这导致了Kolmogorov (n, p)宽度,它描述了一个ROM在多项式阶p和减小尺寸n的多项式映射流形上的最佳可能误差的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信