On the Periodicity of Singular Vectors and the Holomorphic Block-Circulant SVD on the Unit Circumference

Giovanni Barbarino
{"title":"On the Periodicity of Singular Vectors and the Holomorphic Block-Circulant SVD on the Unit Circumference","authors":"Giovanni Barbarino","doi":"arxiv-2312.00707","DOIUrl":null,"url":null,"abstract":"We investigate the singular value decomposition of a rectangular matrix that\nis analytic on the complex unit circumference, which occurs, e.g., with the\nmatrix of transfer functions representing a broadband multiple-input\nmultiple-output channel. Our analysis is based on the Puiseux series expansion\nof the eigenvalue decomposition of analytic para-Hermitian matrices on the\ncomplex unit circumference. We study the case in which the rectangular matrix\ndoes not admit a full analytic singular value factorization, either due to\npartly multiplexed systems or to sign ambiguity. We show how to find an SVD\nfactorization in the ring of Puiseux series where each singular value and the\nassociated singular vectors present the same period and multiplexing structure,\nand we prove that it is always possible to find an analytic pseudo-circulant\nfactorization, meaning that any arbitrary arrangements of multiplexed systems\ncan be converted into a parallel form. In particular, one can show that the\nsign ambiguity can be overcome by allowing non-real holomorphic singular\nvalues.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"39 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the singular value decomposition of a rectangular matrix that is analytic on the complex unit circumference, which occurs, e.g., with the matrix of transfer functions representing a broadband multiple-input multiple-output channel. Our analysis is based on the Puiseux series expansion of the eigenvalue decomposition of analytic para-Hermitian matrices on the complex unit circumference. We study the case in which the rectangular matrix does not admit a full analytic singular value factorization, either due to partly multiplexed systems or to sign ambiguity. We show how to find an SVD factorization in the ring of Puiseux series where each singular value and the associated singular vectors present the same period and multiplexing structure, and we prove that it is always possible to find an analytic pseudo-circulant factorization, meaning that any arbitrary arrangements of multiplexed systems can be converted into a parallel form. In particular, one can show that the sign ambiguity can be overcome by allowing non-real holomorphic singular values.
单位周长上奇异向量的周期性及全纯块循环奇异向量分解
我们研究了在复单位周长上解析的矩形矩阵的奇异值分解,例如,与表示宽带多输入多输出通道的传递函数矩阵一起发生。我们的分析是基于解析型准厄米矩阵在复单位周长上的特征值分解的Puiseux级数展开式。我们研究了矩形矩阵由于部分复用系统或符号模糊而不能完全解析奇异值分解的情况。我们给出了如何在Puiseux级数的环上找到一个奇异分解,其中每个奇异值和相关的奇异向量表示相同的周期和复用结构,并证明了它总是可以找到一个解析伪循环分解,这意味着复用系统的任何任意排列都可以转换成并行形式。特别是,我们可以证明通过允许非实全纯奇异值来克服符号歧义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信