Neural networks for the approximation of Euler's elastica

Elena Celledoni, Ergys Çokaj, Andrea Leone, Sigrid Leyendecker, Davide Murari, Brynjulf Owren, Rodrigo T. Sato Martín de Almagro, Martina Stavole
{"title":"Neural networks for the approximation of Euler's elastica","authors":"Elena Celledoni, Ergys Çokaj, Andrea Leone, Sigrid Leyendecker, Davide Murari, Brynjulf Owren, Rodrigo T. Sato Martín de Almagro, Martina Stavole","doi":"arxiv-2312.00644","DOIUrl":null,"url":null,"abstract":"Euler's elastica is a classical model of flexible slender structures,\nrelevant in many industrial applications. Static equilibrium equations can be\nderived via a variational principle. The accurate approximation of solutions of\nthis problem can be challenging due to nonlinearity and constraints. We here\npresent two neural network based approaches for the simulation of this Euler's\nelastica. Starting from a data set of solutions of the discretised static\nequilibria, we train the neural networks to produce solutions for unseen\nboundary conditions. We present a $\\textit{discrete}$ approach learning\ndiscrete solutions from the discrete data. We then consider a\n$\\textit{continuous}$ approach using the same training data set, but learning\ncontinuous solutions to the problem. We present numerical evidence that the\nproposed neural networks can effectively approximate configurations of the\nplanar Euler's elastica for a range of different boundary conditions.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"39 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.00644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Euler's elastica is a classical model of flexible slender structures, relevant in many industrial applications. Static equilibrium equations can be derived via a variational principle. The accurate approximation of solutions of this problem can be challenging due to nonlinearity and constraints. We here present two neural network based approaches for the simulation of this Euler's elastica. Starting from a data set of solutions of the discretised static equilibria, we train the neural networks to produce solutions for unseen boundary conditions. We present a $\textit{discrete}$ approach learning discrete solutions from the discrete data. We then consider a $\textit{continuous}$ approach using the same training data set, but learning continuous solutions to the problem. We present numerical evidence that the proposed neural networks can effectively approximate configurations of the planar Euler's elastica for a range of different boundary conditions.
欧拉弹性近似的神经网络
欧拉弹性模型是柔性细长结构的经典模型,在许多工业应用中都有应用。静力平衡方程可以通过变分原理推导出来。由于非线性和约束,该问题的解的精确逼近可能具有挑战性。本文提出了两种基于神经网络的欧拉方程模拟方法。从离散静态平衡的解的数据集开始,我们训练神经网络产生看不见边界条件的解。我们提出了一种$\textit{discrete}$方法,从离散数据中学习离散解。然后我们考虑$\textit{continuous}$方法,使用相同的训练数据集,但学习问题的连续解决方案。我们给出的数值证据表明,所提出的神经网络可以有效地近似一系列不同边界条件下的平面欧拉弹性结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信