The weighted characteristic function of the multivariate PIT: Independence and goodness-of-fit tests

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jean-François Quessy, Samuel Lemaire-Paquette
{"title":"The weighted characteristic function of the multivariate PIT: Independence and goodness-of-fit tests","authors":"Jean-François Quessy,&nbsp;Samuel Lemaire-Paquette","doi":"10.1016/j.jmva.2023.105272","DOIUrl":null,"url":null,"abstract":"<div><p><span>Many authors have exploited the fact that the distribution of the multivariate probability<span> integral transformation (PIT) of a continuous random vector </span></span><span><math><mrow><mi>X</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> with cumulative distribution function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> is free of the marginal distributions. While most of these methods are based on the cdf of <span><math><mrow><mi>W</mi><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span><span>, this paper introduces the weighted characteristic function (WCf) of </span><span><math><mi>W</mi></math></span>. A sample version of the WCf of <span><math><mi>W</mi></math></span><span><span> based on pseudo-observations is proposed and its weak limit in a space of complex functions is formally established. This result can be used to define test statistics for multivariate independence and goodness-of-fit in </span>copula<span> models, whose asymptotic behaviour comes from the weak convergence of the empirical WCf process. Simulations show the good sampling properties of these new tests, and an illustration is given on the multivariate Cook and Johnson dataset.</span></span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001185","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Many authors have exploited the fact that the distribution of the multivariate probability integral transformation (PIT) of a continuous random vector XRd with cumulative distribution function FX is free of the marginal distributions. While most of these methods are based on the cdf of W=FX(X), this paper introduces the weighted characteristic function (WCf) of W. A sample version of the WCf of W based on pseudo-observations is proposed and its weak limit in a space of complex functions is formally established. This result can be used to define test statistics for multivariate independence and goodness-of-fit in copula models, whose asymptotic behaviour comes from the weak convergence of the empirical WCf process. Simulations show the good sampling properties of these new tests, and an illustration is given on the multivariate Cook and Johnson dataset.

多元PIT的加权特征函数:独立性和拟合优度检验
许多作者利用了连续随机向量X∈Rd具有累积分布函数FX的多元概率积分变换(PIT)的分布不受边际分布的影响。这些方法大多基于W=FX(X)的cdf,本文引入了W的加权特征函数(WCf),提出了基于伪观测的W的加权特征函数的样本版本,并正式建立了其在复函数空间中的弱极限。该结果可用于定义copula模型中多元独立性和拟合优度的检验统计量,其渐近行为来自经验WCf过程的弱收敛。仿真结果表明,这些新测试具有良好的采样特性,并在多元Cook和Johnson数据集上进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信