Supermodular and directionally convex comparison results for general factor models

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jonathan Ansari , Ludger Rüschendorf
{"title":"Supermodular and directionally convex comparison results for general factor models","authors":"Jonathan Ansari ,&nbsp;Ludger Rüschendorf","doi":"10.1016/j.jmva.2023.105264","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides comparison results for general factor models with respect to the supermodular and directionally convex order. These results extend and strengthen previous ordering results from the literature concerning certain classes of mixture models as mixtures of multivariate normals, multivariate elliptic and exchangeable models to general factor models. For the main results, we first strengthen some known orthant ordering results for the multivariate <figure><img></figure> -product of the specifications, which represents the copula of the factor model, to the stronger notion of the supermodular ordering. The stronger comparison results are based on classical rearrangement results and in particular are rendered possible by some involved constructions of transfers as arising from mass transfer theory. The ordering results for <figure><img></figure> -products are then extended to factor models with general conditional dependencies. As a consequence of the ordering results, we derive worst case scenarios in relevant classes of factor models allowing, in particular, interesting applications to deriving sharp bounds in financial and insurance risk models. The results and methods of this paper are a further indication of the particular effectiveness of Sklar‘s copula notion.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23001100/pdfft?md5=79b1641af919cd99e14f1bcbf5afbfbd&pid=1-s2.0-S0047259X23001100-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides comparison results for general factor models with respect to the supermodular and directionally convex order. These results extend and strengthen previous ordering results from the literature concerning certain classes of mixture models as mixtures of multivariate normals, multivariate elliptic and exchangeable models to general factor models. For the main results, we first strengthen some known orthant ordering results for the multivariate

-product of the specifications, which represents the copula of the factor model, to the stronger notion of the supermodular ordering. The stronger comparison results are based on classical rearrangement results and in particular are rendered possible by some involved constructions of transfers as arising from mass transfer theory. The ordering results for
-products are then extended to factor models with general conditional dependencies. As a consequence of the ordering results, we derive worst case scenarios in relevant classes of factor models allowing, in particular, interesting applications to deriving sharp bounds in financial and insurance risk models. The results and methods of this paper are a further indication of the particular effectiveness of Sklar‘s copula notion.

一般因子模型的超模与方向凸比较结果
本文给出了一般因子模型关于超模和方向凸阶的比较结果。这些结果扩展和加强了先前文献中关于多元正态、多元椭圆和可交换模型的混合模型到一般因子模型的排序结果。对于主要结果,我们首先将一些已知的表示因子模型的联结关系的规范的多变量积的正交排序结果加强到更强的超模排序概念。较强的比较结果是基于经典的重排结果,特别是由于一些由传质理论引起的传递的相关结构而成为可能。然后将-products的排序结果扩展到具有一般条件依赖关系的因子模型。作为排序结果的结果,我们在相关类别的因子模型中推导出最坏情况,特别是允许在金融和保险风险模型中推导出尖锐界限的有趣应用。本文的结果和方法进一步证明了Sklar的联结概念的特殊有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信