{"title":"A class of smooth, possibly data-adaptive nonparametric copula estimators containing the empirical beta copula","authors":"Ivan Kojadinovic , Bingqing Yi","doi":"10.1016/j.jmva.2023.105269","DOIUrl":null,"url":null,"abstract":"<div><p>A broad class of smooth, possibly data-adaptive nonparametric copula<span> estimators that contains empirical Bernstein copulas introduced by Sancetta and Satchell (and thus the empirical beta copula proposed by Segers, Sibuya and Tsukahara) is studied. Within this class, a subclass of estimators that depend on a scalar parameter determining the amount of marginal smoothing and a functional parameter controlling the shape of the smoothing region is specifically considered. Empirical investigations of the influence of these parameters suggest to focus on two particular data-adaptive smooth copula estimators that were found to be uniformly better than the empirical beta copula in all of the considered Monte Carlo experiments. Finally, with future applications to change-point detection in mind, conditions under which related sequential empirical copula processes converge weakly are provided.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105269"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2300115X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
A broad class of smooth, possibly data-adaptive nonparametric copula estimators that contains empirical Bernstein copulas introduced by Sancetta and Satchell (and thus the empirical beta copula proposed by Segers, Sibuya and Tsukahara) is studied. Within this class, a subclass of estimators that depend on a scalar parameter determining the amount of marginal smoothing and a functional parameter controlling the shape of the smoothing region is specifically considered. Empirical investigations of the influence of these parameters suggest to focus on two particular data-adaptive smooth copula estimators that were found to be uniformly better than the empirical beta copula in all of the considered Monte Carlo experiments. Finally, with future applications to change-point detection in mind, conditions under which related sequential empirical copula processes converge weakly are provided.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.