A single risk approach to the semiparametric competing risks model with parametric Archimedean risk dependence

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Simon M.S. Lo , Ralf A. Wilke
{"title":"A single risk approach to the semiparametric competing risks model with parametric Archimedean risk dependence","authors":"Simon M.S. Lo ,&nbsp;Ralf A. Wilke","doi":"10.1016/j.jmva.2023.105276","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers a dependent competing risks model with the distribution of one risk being a semiparametric proportional hazards model, whereas the model for the other risks and the degree of risk dependence of an Archimedean copula are unknown. Identifiability is shown when there is at least one covariate with at least two values. Estimation is done by means of a <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent semiparametric two-step procedure. Applicability and attractive finite sample performance are demonstrated with the help of simulations. An application to unemployment duration confirms the importance of estimating rather than assuming risk dependence.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105276"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23001227/pdfft?md5=ddb27eca7b668c675ebd4fe43bdd4f7b&pid=1-s2.0-S0047259X23001227-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001227","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a dependent competing risks model with the distribution of one risk being a semiparametric proportional hazards model, whereas the model for the other risks and the degree of risk dependence of an Archimedean copula are unknown. Identifiability is shown when there is at least one covariate with at least two values. Estimation is done by means of a n-consistent semiparametric two-step procedure. Applicability and attractive finite sample performance are demonstrated with the help of simulations. An application to unemployment duration confirms the importance of estimating rather than assuming risk dependence.

具有参数阿基米德风险依赖的半参数竞争风险模型的单风险方法
本文考虑一个相互依赖的竞争风险模型,其中一个风险的分布是半参数比例风险模型,而其他风险的模型和阿基米德联结的风险依赖程度是未知的。当至少有一个协变量具有至少两个值时,显示可识别性。估计是通过一个n一致的半参数两步过程来完成的。通过仿真验证了该方法的适用性和良好的有限样本性能。对失业持续时间的应用证实了估计而不是假设风险依赖的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信