A unified complex noncentral Wishart type distribution inspired by massive MIMO systems

Q2 Mathematics
Johannes T. Ferreira, Andriëtte Bekker
{"title":"A unified complex noncentral Wishart type distribution inspired by massive MIMO systems","authors":"Johannes T. Ferreira, Andriëtte Bekker","doi":"10.1186/s40488-019-0093-3","DOIUrl":null,"url":null,"abstract":"The eigenvalue distributions from a complex noncentral Wishart matrix S=XHX has been the subject of interest in various real world applications, where X is assumed to be complex matrix variate normally distributed with nonzero mean M and covariance Σ. This paper focuses on a weighted analytical representation of S to alleviate the restriction of normality; thereby allowing the choice of X to be complex matrix variate elliptically distributed for the practitioner. New results for eigenvalue distributions of more generalised forms are derived under this elliptical assumption, and investigated for certain members of the complex elliptical class. The distribution of the minimum eigenvalue enjoys particular attention. This theoretical investigation has proposed impact in communications systems (where massive datasets can be conveniently formulated in matrix terms), in particular the case where the noncentral matrix has rank one which is useful in practice.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-019-0093-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

The eigenvalue distributions from a complex noncentral Wishart matrix S=XHX has been the subject of interest in various real world applications, where X is assumed to be complex matrix variate normally distributed with nonzero mean M and covariance Σ. This paper focuses on a weighted analytical representation of S to alleviate the restriction of normality; thereby allowing the choice of X to be complex matrix variate elliptically distributed for the practitioner. New results for eigenvalue distributions of more generalised forms are derived under this elliptical assumption, and investigated for certain members of the complex elliptical class. The distribution of the minimum eigenvalue enjoys particular attention. This theoretical investigation has proposed impact in communications systems (where massive datasets can be conveniently formulated in matrix terms), in particular the case where the noncentral matrix has rank one which is useful in practice.
受大规模MIMO系统启发的统一复杂非中心Wishart型分布
复杂非中心Wishart矩阵S=XHX的特征值分布一直是各种实际应用中感兴趣的主题,其中X被假设为具有非零均值M和协方差Σ的复杂矩阵变量正态分布。本文重点研究了S的加权解析表示,以减轻正态性的限制;从而允许选择的X是复矩阵变量椭圆分布的实践者。在此椭圆假设下,得到了更广义形式的特征值分布的新结果,并对复椭圆类的某些成员进行了研究。最小特征值的分布特别值得注意。这一理论研究对通信系统(其中大量数据集可以方便地用矩阵项表示)产生了影响,特别是在非中心矩阵排名为1的情况下,这在实践中是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信