The continuous-time quantum walk on some graphs based on the view of quantum probability

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS
Qi Han, Yaxin Kou, Ning Bai, Huan Wang
{"title":"The continuous-time quantum walk on some graphs based on the view of quantum probability","authors":"Qi Han, Yaxin Kou, Ning Bai, Huan Wang","doi":"10.1142/s0219749922500150","DOIUrl":null,"url":null,"abstract":"<p>In this paper, continuous-time quantum walk is discussed based on the view of quantum probability, i.e. the quantum decomposition of the adjacency matrix <i>A</i> of graph. Regard adjacency matrix <i>A</i> as Hamiltonian which is a real symmetric matrix with elements 0 or 1, so we regard <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>i</mi><mi>t</mi><mi>A</mi></mrow></msup></math></span><span></span> as an unbiased evolution operator, which is related to the calculation of probability amplitude. Combining the quantum decomposition and spectral distribution <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>μ</mi></math></span><span></span> of adjacency matrix <i>A</i>, we calculate the probability amplitude reaching each stratum in continuous-time quantum walk on complete bipartite graphs, finite two-dimensional lattices, binary tree, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span>-ary tree and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span>-fold star power <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>G</mi></mrow><mrow><mo>⋆</mo><mi>N</mi></mrow></msup></math></span><span></span>. Of course, this method is also suitable for studying some other graphs, such as growing graphs, hypercube graphs and so on, in addition, the applicability of this method is also explained.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749922500150","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, continuous-time quantum walk is discussed based on the view of quantum probability, i.e. the quantum decomposition of the adjacency matrix A of graph. Regard adjacency matrix A as Hamiltonian which is a real symmetric matrix with elements 0 or 1, so we regard eitA as an unbiased evolution operator, which is related to the calculation of probability amplitude. Combining the quantum decomposition and spectral distribution μ of adjacency matrix A, we calculate the probability amplitude reaching each stratum in continuous-time quantum walk on complete bipartite graphs, finite two-dimensional lattices, binary tree, N-ary tree and N-fold star power GN. Of course, this method is also suitable for studying some other graphs, such as growing graphs, hypercube graphs and so on, in addition, the applicability of this method is also explained.

基于量子概率论的若干图上的连续时间量子行走
本文基于量子概率的观点,即图的邻接矩阵A的量子分解,讨论了连续时间量子行走问题。将邻接矩阵A视为哈密顿矩阵,它是一个元素为0或1的实对称矩阵,因此我们将e - itA视为一个无偏演化算子,这与概率幅值的计算有关。结合邻接矩阵A的量子分解和谱分布μ,我们计算了连续时间量子行走在完全二部图、有限二维格、二叉树、N元树和N次星幂G - N上到达各层的概率幅值。当然,这种方法也适用于研究其他一些图,如生长图、超立方图等,此外,还说明了这种方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Information
International Journal of Quantum Information 物理-计算机:理论方法
CiteScore
2.20
自引率
8.30%
发文量
36
审稿时长
10 months
期刊介绍: The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research: Quantum Cryptography Quantum Computation Quantum Communication Fundamentals of Quantum Mechanics Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信