Channel-based coherence of quantum states

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS
Cheng-Yang Zhang, Pu Wang, Li-Hua Bai, Zhi-Hua Guo, Huai-Xin Cao
{"title":"Channel-based coherence of quantum states","authors":"Cheng-Yang Zhang, Pu Wang, Li-Hua Bai, Zhi-Hua Guo, Huai-Xin Cao","doi":"10.1142/s0219749922500149","DOIUrl":null,"url":null,"abstract":"<p>Quantum coherence is one of the most fundamental and striking features in quantum physics. Considered the standard coherence (SC), the partial coherence (PC) and the block coherence (BC) as variance of quantum states under some quantum channels (QCs) <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>, we propose the concept of channel-based coherence of quantum states, called <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-coherence for short, which contains the SC, PC and BC, but does not contain the positive operator-valued measure (POVM)-based coherence. By our definition, a state <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi></math></span><span></span> is said to be <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-incoherent if it is a fixed point of a QC <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>, otherwise, it is said to be <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-coherent. First, we find the set <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℐ</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Φ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of all <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-incoherent states for some given channels <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span> and prove that the set <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℐ</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Φ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> forms a nonempty compact convex set for any channel <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>. Second, we define <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-incoherent operations (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-IOs) and prove that the set of all <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-IOs is a nonempty convex set. We also establish some characterizations of a <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-IO in terms of its Kraus operators. Lastly, we discuss the problem of quantifying <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-coherence and prove some related properties.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749922500149","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum coherence is one of the most fundamental and striking features in quantum physics. Considered the standard coherence (SC), the partial coherence (PC) and the block coherence (BC) as variance of quantum states under some quantum channels (QCs) Φ, we propose the concept of channel-based coherence of quantum states, called Φ-coherence for short, which contains the SC, PC and BC, but does not contain the positive operator-valued measure (POVM)-based coherence. By our definition, a state ρ is said to be Φ-incoherent if it is a fixed point of a QC Φ, otherwise, it is said to be Φ-coherent. First, we find the set (Φ) of all Φ-incoherent states for some given channels Φ and prove that the set (Φ) forms a nonempty compact convex set for any channel Φ. Second, we define Φ-incoherent operations (Φ-IOs) and prove that the set of all Φ-IOs is a nonempty convex set. We also establish some characterizations of a Φ-IO in terms of its Kraus operators. Lastly, we discuss the problem of quantifying Φ-coherence and prove some related properties.

量子态的通道相干性
量子相干性是量子物理学中最基本、最显著的特征之一。考虑到标准相干性(SC)、部分相干性(PC)和块相干性(BC)是某些量子通道(qc) Φ下量子态的方差,我们提出了基于信道的量子态相干性的概念,简称Φ-coherence,其中包含SC、PC和BC,但不包含基于正算子值测度(POVM)的相干性。根据我们的定义,如果状态ρ是QC的一个不动点Φ,它就被称为Φ-incoherent,否则,它就被称为Φ-coherent。首先,我们找到了给定通道Φ的所有Φ-incoherent状态的集合k (Φ),并证明了对于任意通道Φ,该集合k (Φ)形成了一个非空紧凸集。其次,我们定义Φ-incoherent操作(Φ-IOs)并证明所有Φ-IOs的集合是一个非空凸集。我们还根据其Kraus算子建立了Φ-IO的一些特征。最后讨论了Φ-coherence的定量化问题,并证明了一些相关性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Information
International Journal of Quantum Information 物理-计算机:理论方法
CiteScore
2.20
自引率
8.30%
发文量
36
审稿时长
10 months
期刊介绍: The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research: Quantum Cryptography Quantum Computation Quantum Communication Fundamentals of Quantum Mechanics Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信