Universal composition operators on weighted Dirichlet spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kaikai Han, Yanyan Tang
{"title":"Universal composition operators on weighted Dirichlet spaces","authors":"Kaikai Han, Yanyan Tang","doi":"10.1007/s43037-023-00308-8","DOIUrl":null,"url":null,"abstract":"<p>It is known that the invariant subspace problem for Hilbert spaces is equivalent to the statement that all minimal non-trivial invariant subspaces for a universal operator are one dimensional. In this paper, we first give a characterization of the boundedness of composition operators on weighted Dirichlet spaces <span>\\({\\mathcal {D}}_{\\alpha }(\\Pi ^{+})\\)</span> over the upper half-plane <span>\\(\\Pi ^{+}\\)</span> using generalized Nevanlinna counting functions, where <span>\\(\\alpha &gt;-1.\\)</span> As an application, we discuss the boundedness of composition operators on <span>\\({\\mathcal {D}}_{\\alpha }(\\Pi ^{+})\\)</span> induced by linear fractional self-maps of <span>\\(\\Pi ^{+}.\\)</span> Second, we characterize composition operators and their adjoints induced by affine self-maps of <span>\\(\\Pi ^{+}\\)</span> that have universal translates on <span>\\({\\mathcal {D}}_{\\alpha }(\\Pi ^{+}).\\)</span> Moreover, we investigate which composition operators and their adjoints induced by hyperbolic non-automorphism self-maps of the open unit disk <span>\\({\\mathbb {D}}\\)</span> have universal translates on weighted Dirichlet spaces <span>\\({\\mathcal {D}}_{\\alpha }({\\mathbb {D}})\\)</span> for <span>\\(\\alpha &gt;-1.\\)</span> Finally, we consider the minimal invariant subspaces of the composition operators that have universal translates.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-023-00308-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that the invariant subspace problem for Hilbert spaces is equivalent to the statement that all minimal non-trivial invariant subspaces for a universal operator are one dimensional. In this paper, we first give a characterization of the boundedness of composition operators on weighted Dirichlet spaces \({\mathcal {D}}_{\alpha }(\Pi ^{+})\) over the upper half-plane \(\Pi ^{+}\) using generalized Nevanlinna counting functions, where \(\alpha >-1.\) As an application, we discuss the boundedness of composition operators on \({\mathcal {D}}_{\alpha }(\Pi ^{+})\) induced by linear fractional self-maps of \(\Pi ^{+}.\) Second, we characterize composition operators and their adjoints induced by affine self-maps of \(\Pi ^{+}\) that have universal translates on \({\mathcal {D}}_{\alpha }(\Pi ^{+}).\) Moreover, we investigate which composition operators and their adjoints induced by hyperbolic non-automorphism self-maps of the open unit disk \({\mathbb {D}}\) have universal translates on weighted Dirichlet spaces \({\mathcal {D}}_{\alpha }({\mathbb {D}})\) for \(\alpha >-1.\) Finally, we consider the minimal invariant subspaces of the composition operators that have universal translates.

加权Dirichlet空间上的全称复合算子
已知希尔伯特空间的不变子空间问题等价于全称算子的所有极小非平凡不变子空间都是一维的命题。本文首先利用广义Nevanlinna计数函数给出了上半平面\(\Pi ^{+}\)上加权Dirichlet空间\({\mathcal {D}}_{\alpha }(\Pi ^{+})\)上复合算子的有界性的刻画,其中\(\alpha >-1.\)作为应用,讨论了\(\Pi ^{+}.\)的线性分数阶自映射诱导的\({\mathcal {D}}_{\alpha }(\Pi ^{+})\)上复合算子的有界性。我们刻画了由\(\Pi ^{+}\)的仿射自映射诱导的复合算子及其伴随在\({\mathcal {D}}_{\alpha }(\Pi ^{+}).\)上具有全称平移的特征,并且研究了开放单位盘\({\mathbb {D}}\)的双曲非自同构自映射诱导的哪些复合算子及其伴随在\(\alpha >-1.\)的加权Dirichlet空间\({\mathcal {D}}_{\alpha }({\mathbb {D}})\)上具有全称平移。我们考虑具有全称转换的组合算子的最小不变子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信