Variable ordering for decision diagrams: A portfolio approach

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anthony Karahalios, Willem-Jan van Hoeve
{"title":"Variable ordering for decision diagrams: A portfolio approach","authors":"Anthony Karahalios, Willem-Jan van Hoeve","doi":"10.1007/s10601-021-09325-6","DOIUrl":null,"url":null,"abstract":"<p>Relaxed decision diagrams have been successfully applied to solve combinatorial optimization problems, but their performance is known to strongly depend on the variable ordering. We propose a portfolio approach to selecting the best ordering among a set of alternatives. We consider several different portfolio mechanisms: a static uniform time-sharing portfolio, an offline predictive model of the single best algorithm using classifiers, a low-knowledge algorithm selection, and a dynamic online time allocator. As a case study, we compare and contrast their performance on the graph coloring problem. We find that on this problem domain, the dynamic online time allocator provides the best overall performance.</p>","PeriodicalId":55211,"journal":{"name":"Constraints","volume":"24 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constraints","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10601-021-09325-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

Abstract

Relaxed decision diagrams have been successfully applied to solve combinatorial optimization problems, but their performance is known to strongly depend on the variable ordering. We propose a portfolio approach to selecting the best ordering among a set of alternatives. We consider several different portfolio mechanisms: a static uniform time-sharing portfolio, an offline predictive model of the single best algorithm using classifiers, a low-knowledge algorithm selection, and a dynamic online time allocator. As a case study, we compare and contrast their performance on the graph coloring problem. We find that on this problem domain, the dynamic online time allocator provides the best overall performance.

决策图的可变排序:投资组合方法
松弛决策图已经成功地应用于组合优化问题,但其性能强烈依赖于变量的排序。我们提出了一种投资组合方法来从一组备选方案中选择最佳排序。我们考虑了几种不同的投资组合机制:静态均匀分时投资组合、使用分类器的单一最佳算法的离线预测模型、低知识算法选择和动态在线时间分配器。作为案例研究,我们比较和对比了它们在图着色问题上的性能。我们发现,在这个问题域上,动态在线时间分配器提供了最好的综合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Constraints
Constraints 工程技术-计算机:理论方法
CiteScore
2.20
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Constraints provides a common forum for the many disciplines interested in constraint programming and constraint satisfaction and optimization, and the many application domains in which constraint technology is employed. It covers all aspects of computing with constraints: theory and practice, algorithms and systems, reasoning and programming, logics and languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信