{"title":"Variable ordering for decision diagrams: A portfolio approach","authors":"Anthony Karahalios, Willem-Jan van Hoeve","doi":"10.1007/s10601-021-09325-6","DOIUrl":null,"url":null,"abstract":"<p>Relaxed decision diagrams have been successfully applied to solve combinatorial optimization problems, but their performance is known to strongly depend on the variable ordering. We propose a portfolio approach to selecting the best ordering among a set of alternatives. We consider several different portfolio mechanisms: a static uniform time-sharing portfolio, an offline predictive model of the single best algorithm using classifiers, a low-knowledge algorithm selection, and a dynamic online time allocator. As a case study, we compare and contrast their performance on the graph coloring problem. We find that on this problem domain, the dynamic online time allocator provides the best overall performance.</p>","PeriodicalId":55211,"journal":{"name":"Constraints","volume":"24 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constraints","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10601-021-09325-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7
Abstract
Relaxed decision diagrams have been successfully applied to solve combinatorial optimization problems, but their performance is known to strongly depend on the variable ordering. We propose a portfolio approach to selecting the best ordering among a set of alternatives. We consider several different portfolio mechanisms: a static uniform time-sharing portfolio, an offline predictive model of the single best algorithm using classifiers, a low-knowledge algorithm selection, and a dynamic online time allocator. As a case study, we compare and contrast their performance on the graph coloring problem. We find that on this problem domain, the dynamic online time allocator provides the best overall performance.
期刊介绍:
Constraints provides a common forum for the many disciplines interested in constraint programming and constraint satisfaction and optimization, and the many application domains in which constraint technology is employed. It covers all aspects of computing with constraints: theory and practice, algorithms and systems, reasoning and programming, logics and languages.