{"title":"Effects of the Chemical Composition of Synthetic Slags Compared to an Average Blast Furnace Slag","authors":"Luis Schnürer, Alisa Machner","doi":"10.1002/cepa.2933","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To study the effect of the main oxides and the minor components in slags on their reactivity as SCM, various glasses were synthesized to stepwise imitate a commercial slag of average chemical composition. First, a glass was produced from the main oxides CaO, Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>. In a second step, the minor components MgO, Fe<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O and K<sub>2</sub>O were added separately to the main oxide mix. A selection of two synthetic glasses was tested for their compressive strength contribution (up to 90 days) by substituting 20 wt.% of cement. After all testing times, the synthetic slags achieved a strength similar to that of the commercial product. The reactivities determined by heat flow calorimetry (R<sup>3</sup> test) correlate with the calculation of NBO/T and the results of <sup>29</sup>Si MAS NMR showing that a decreased degree of polymerization enhances the reactivity. Apart from that, FTIR spectroscopy and <sup>27</sup>Al MAS NMR indicate a similar structure of the original and the synthetic slags.</p>\n </div>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"6 6","pages":"181-188"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.2933","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.2933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To study the effect of the main oxides and the minor components in slags on their reactivity as SCM, various glasses were synthesized to stepwise imitate a commercial slag of average chemical composition. First, a glass was produced from the main oxides CaO, Al2O3 and SiO2. In a second step, the minor components MgO, Fe2O3, Na2O and K2O were added separately to the main oxide mix. A selection of two synthetic glasses was tested for their compressive strength contribution (up to 90 days) by substituting 20 wt.% of cement. After all testing times, the synthetic slags achieved a strength similar to that of the commercial product. The reactivities determined by heat flow calorimetry (R3 test) correlate with the calculation of NBO/T and the results of 29Si MAS NMR showing that a decreased degree of polymerization enhances the reactivity. Apart from that, FTIR spectroscopy and 27Al MAS NMR indicate a similar structure of the original and the synthetic slags.
为了研究矿渣中主要氧化物和次要组分对矿渣作为SCM反应性的影响,合成了各种玻璃,逐步模拟了平均化学成分的工业矿渣。首先,以CaO、Al2O3和SiO2为主要氧化物制备玻璃。在第二步,次要组分MgO, Fe2O3, Na2O和K2O分别加入到主氧化物混合物中。通过替换20%的水泥,测试了两种合成玻璃的抗压强度贡献(长达90天)。经过多次测试,合成炉渣达到了与商业产品相似的强度。热流量热法(R3测试)测定的反应性与NBO/T的计算结果相一致,29Si MAS NMR结果表明聚合度的降低提高了反应性。除此之外,FTIR光谱和27Al MAS NMR表明原始炉渣和合成炉渣具有相似的结构。