{"title":"Blood-brain barrier breakdown in COVID-19 ICU survivors: an MRI pilot study.","authors":"Wen Shi, Dengrong Jiang, Hannah Rando, Shivalika Khanduja, Zixuan Lin, Kaisha Hazel, George Pottanat, Ebony Jones, Cuimei Xu, Doris Lin, Sevil Yasar, Sung-Min Cho, Hanzhang Lu","doi":"10.1515/nipt-2023-0018","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Coronavirus disease 2019 (COVID-19) results in severe inflammation at the acute stage. Chronic neuroinflammation and abnormal immunological response have been suggested to be the contributors to neuro-long-COVID, but direct evidence has been scarce. This study aims to determine the integrity of the blood-brain barrier (BBB) in COVID-19 intensive care unit (ICU) survivors using a novel MRI technique.</p><p><strong>Methods: </strong>COVID-19 ICU survivors (n=7) and age and sex-matched control participants (n=17) were recruited from June 2021 to March 2023. None of the control participants were hospitalized due to COVID-19 infection. The COVID-19 ICU survivors were studied at 98.6 ± 14.9 days after their discharge from ICU. A non-invasive MRI technique was used to assess the BBB permeability to water molecules, in terms of permeability surface area-product (PS) in the units of mL/100 g/min.</p><p><strong>Results: </strong>PS was significantly higher in COVID-19 ICU survivors (p=0.038) when compared to the controls, with values of 153.1 ± 20.9 mL/100 g/min and 132.5 ± 20.7 mL/100 g/min, respectively. In contrast, there were no significant differences in whole-brain cerebral blood flow (p=0.649) or brain volume (p=0.471) between the groups.</p><p><strong>Conclusions: </strong>There is preliminary evidence of a chronic BBB breakdown in COVID-19 survivors who had a severe acute infection, suggesting a plausible contributor to neurological long-COVID symptoms.</p>","PeriodicalId":74278,"journal":{"name":"NeuroImmune pharmacology and therapeutics","volume":"2 4","pages":"333-338"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImmune pharmacology and therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nipt-2023-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Coronavirus disease 2019 (COVID-19) results in severe inflammation at the acute stage. Chronic neuroinflammation and abnormal immunological response have been suggested to be the contributors to neuro-long-COVID, but direct evidence has been scarce. This study aims to determine the integrity of the blood-brain barrier (BBB) in COVID-19 intensive care unit (ICU) survivors using a novel MRI technique.
Methods: COVID-19 ICU survivors (n=7) and age and sex-matched control participants (n=17) were recruited from June 2021 to March 2023. None of the control participants were hospitalized due to COVID-19 infection. The COVID-19 ICU survivors were studied at 98.6 ± 14.9 days after their discharge from ICU. A non-invasive MRI technique was used to assess the BBB permeability to water molecules, in terms of permeability surface area-product (PS) in the units of mL/100 g/min.
Results: PS was significantly higher in COVID-19 ICU survivors (p=0.038) when compared to the controls, with values of 153.1 ± 20.9 mL/100 g/min and 132.5 ± 20.7 mL/100 g/min, respectively. In contrast, there were no significant differences in whole-brain cerebral blood flow (p=0.649) or brain volume (p=0.471) between the groups.
Conclusions: There is preliminary evidence of a chronic BBB breakdown in COVID-19 survivors who had a severe acute infection, suggesting a plausible contributor to neurological long-COVID symptoms.