Tiling and weak tiling in (Zp)d.

Gergely Kiss, Dávid Matolcsi, Máté Matolcsi, Gábor Somlai
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Tiling and weak tiling in <ns0:math><ns0:msup><ns0:mrow><ns0:mo>(</ns0:mo><ns0:msub><ns0:mi>Z</ns0:mi><ns0:mi>p</ns0:mi></ns0:msub><ns0:mo>)</ns0:mo></ns0:mrow><ns0:mi>d</ns0:mi></ns0:msup></ns0:math>.","authors":"Gergely Kiss, Dávid Matolcsi, Máté Matolcsi, Gábor Somlai","doi":"10.1007/s43670-023-00073-7","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss the relation of tiling, weak tiling and spectral sets in finite abelian groups. In particular, in elementary <i>p</i>-groups <math><msup><mrow><mo>(</mo><msub><mi>Z</mi><mi>p</mi></msub><mo>)</mo></mrow><mi>d</mi></msup></math>, we introduce an averaging procedure that leads to a natural object of study: a 4-tuple of functions which can be regarded as a common generalization of tiles and spectral sets. We characterize such 4-tuples for <math><mrow><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></math>, and prove some partial results for <math><mrow><mi>d</mi><mo>=</mo><mn>3</mn></mrow></math>.</p>","PeriodicalId":74751,"journal":{"name":"Sampling theory, signal processing, and data analysis","volume":"22 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sampling theory, signal processing, and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43670-023-00073-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the relation of tiling, weak tiling and spectral sets in finite abelian groups. In particular, in elementary p-groups (Zp)d, we introduce an averaging procedure that leads to a natural object of study: a 4-tuple of functions which can be regarded as a common generalization of tiles and spectral sets. We characterize such 4-tuples for d=1,2, and prove some partial results for d=3.

(Zp)d中的平铺和弱平铺。
讨论了有限阿贝尔群中平铺、弱平铺与谱集的关系。特别地,在初等p群(Zp)d中,我们引入了一个平均过程,它导致了一个自然的研究对象:一个4元函数组,它可以被视为瓦片和谱集的共同推广。我们刻画了d=1,2时的4元组,并证明了d=3时的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信