Relativistic ultrafast electron diffraction at high repetition rates.

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Structural Dynamics-Us Pub Date : 2023-12-04 eCollection Date: 2023-11-01 DOI:10.1063/4.0000203
K M Siddiqui, D B Durham, F Cropp, F Ji, S Paiagua, C Ophus, N C Andresen, L Jin, J Wu, S Wang, X Zhang, W You, M Murnane, M Centurion, X Wang, D S Slaughter, R A Kaindl, P Musumeci, A M Minor, D Filippetto
{"title":"Relativistic ultrafast electron diffraction at high repetition rates.","authors":"K M Siddiqui, D B Durham, F Cropp, F Ji, S Paiagua, C Ophus, N C Andresen, L Jin, J Wu, S Wang, X Zhang, W You, M Murnane, M Centurion, X Wang, D S Slaughter, R A Kaindl, P Musumeci, A M Minor, D Filippetto","doi":"10.1063/4.0000203","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"10 6","pages":"064302"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697722/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000203","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.

高重复率的相对论超快电子衍射。
在其固有的时间和空间尺度上解决物质动力学的能力构成了化学、生物学和材料科学的关键挑战和融合主题。在过去的几十年里,超快电子衍射(UED)作为一种灵敏的原子运动解析技术出现了。越来越复杂的UED仪器正在开发,旨在提高光束亮度,以观察结构特征,但到目前为止,它们仅限于低平均电流光束。在这里,我们介绍了雇用(高重复率电子散射)仪器的技术设计和能力,它混合了相对论电子和高重复率,与现有的最先进的仪器相比,平均光束电流提高了几个数量级。该装置利用一种新型电子源,为UED实验提供高达MHz重复率的飞秒持续电子脉冲。演示了仪器在低于500fs的响应功能,并以未来< 100fs的时间分辨率为目标。我们提供了固体和气相样品的衍射测量实例,包括微衍射和纳米衍射(具有100 nm光束尺寸)模式,这展示了该仪器在新型UED实验中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信